Note on Transformations of Posets with the Same Upper Bound Graph and Minimal Elements

KENJIRO OGAWA AND MORIMASA TSUCHIYA
Department of Mathematical Sciences, Tokai University
Hiratsuka 259-1292, Japan
tsuchiya@ss.u-tokai.ac.jp

Abstract. Two posets with the same canonical poset and the same upper bound graph can be transformed into each other by a finite sequence of two kinds of transformations, called $x < y$-additions and $x < y$-deletions on minimal elements.

2000 Mathematics Subject Classification: 05C62

Key words and phrases: Upper bound graph, poset operation, canonical poset.

1. Introduction

In this paper, we consider finite undirected simple graphs and finite posets. For a poset $P = (X, \leq)$, the upper bound graph (UB-graph) of $P = (X, \leq)$ is the graph $UB(P) = (X, E_{UB(P)})$, where $uv \in E_{UB(P)}$ if and only if $u \neq v$ and there exists $m \in X$ such that $u, v \leq m$. McMorris and Zaslavsky introduced this concept and gave a characterization of upper bound graphs [2].

Figure 1 shows two different posets which have the same upper bound graph. This example induces an interest in properties of posets with the same UB-graph.

In [3] and [4] we deal with sequences of transformations that convert a poset to any other poset that has the same upper bound graph. In this paper we show that the transformations can be of a special kind involving minimal elements of the posets at each step.

Received: September 13, 2005; Revised: January 20, 2006.
2. Transformations of posets

For a poset \(P = (X, \leq) \) and \(x \in X \), \(L_P(x) = \{ y \in X ; y < x \} \) and \(U_P(x) = \{ y \in X ; y > x \} \). Furthermore \(V(P) \) is \(X \), \(\max(P) \) is the set of all maximal elements of \(P \), \(\min(P) \) is the set of all minimal elements of \(P \). For a poset \(P \) and \(x, y \in V(P) \), \(x \parallel_P y \) shows that \(x \) is incomparable with \(y \) in \(P \). For a poset \(P \), the canonical poset of \(P \) is the poset \(\text{can}(P) \) on the set \(V(P) \) in which \(x \leq_{\text{can}(P)} y \) if and only if (1) \(y \in \max(P) \) and \(x \leq_P y \), or (2) \(x = y \).

A clique in the graph \(G \) is the vertex set of a maximal complete subgraph. In some cases, we consider that a clique is a maximal complete subgraph. We say a family \(C \) of complete subgraphs edge covers \(G \) if for each edge \(uv \in E(G) \), there exists \(C \in C \) such that \(u, v \in C \).

Theorem 2.1. [2] Let \(G \) be a graph with \(n \) vertices. The graph \(G \) is a UB-graph if and only if there exists a family \(C = \{ C_1, C_2, ..., C_k \} \) of complete subgraphs of \(G \) such that

(a) \(C \) edge covers \(G \),

(b) for each \(C_i \), there exists a vertex \(v_i \in C_i - \bigcup_{j \neq i} C_j \).

Furthermore, such a family \(C \) must consist of cliques of \(G \) and is the only such family if \(G \) has no isolated vertices.

For a UB-graph \(G \) and an edge clique cover \(C = \{ C_1, C_2, ..., C_k \} \) satisfying the conditions of Theorem 2.1, a vertex subset \(K_{UB}(G) \) that consists of one element of each set \(C_i - \bigcup_{j \neq i} C_j \) is called a kernel of \(G \). We know a fact that, given any \(K_{UB}(G) \), there exists a poset \(P \) such that \(G = UB(P) \) and \(K_{UB}(G) = \max(P) \).

In the remainder of this paper, we consider a fixed labeled connected UB-graph \(G \) with a fixed kernel \(K_{UB}(G) \).

We define \(\mathcal{P}_{UB}(G) = \{ P ; UB(P) = G, \max(P) = K_{UB}(G) \} \). Each poset \(P \in \mathcal{P}_{UB}(G) \) is identified with the set of comparable pairs in \(P \). Thus \(\mathcal{P}_{UB}(G) \) is a poset by set inclusion. The canonical poset \(\text{can}(G) \) of \(G \) is the canonical poset of any poset \(P \in \mathcal{P}_{UB}(G) \). By Theorem 2.1, the canonical poset is independent of the choice. For a UB-graph \(G \), the canonical poset \(\text{can}(G) \) is a height 1 poset and \(V(\text{can}(G)) = \max(\text{can}(G)) \cup \min(\text{can}(G)) \).

To consider some relations among posets of \(\mathcal{P}_{UB}(G) \), we need some concepts as follows: For elements \(x \) and \(y \) in a poset \(P \) such that \(y \notin \max(P) \) and \(x \) is covered by \(y \), the poset \(P_{<y} \) is obtained from \(P \) by subtracting the relation \(x \leq y \) from \(P \), and we call this transformation the \(x < y \)-deletion. For an incomparable pair \(x \) and \(y \) in a poset \(P \) such that \(y \notin \max(P) \), \(U_P(y) \subseteq U_P(x) \) and \(L_P(y) \supseteq L_P(x) \), the poset \(P_{<y} \) is obtained from \(P \) by adding the relation \(x \leq y \) to \(P \), and we call this transformation the \(x < y \)-addition. We obtain the following facts on these transformations.

Fact 1. For a poset \(P \),

1. \(P \) and \(P_{<y} \) have the same UB-graph,
2. \(P \) and \(P_{<y} \) also have the same UB-graph, and
3. \(x < y \)-additions and \(x < y \)-deletions are inverse transformations to each other.
By these facts, we obtained the following result.

Theorem 2.2. [3] Let G be a UB-graph and P, Q be posets in $\mathcal{P}_{UB}(G)$. Then

1. P can be transformed into Q by a sequence of $x < y$-deletions and $x < y$-additions.
2. Every poset in $\mathcal{P}_{UB}(G)$ is obtained from $\text{can}(G)$ by $x < y$-additions only.

For an $x < y$-addition, we need to check two conditions: $U_P(y) \subseteq U_P(x)$ and $L_P(y) \supseteq L_P(x)$. If x is a minimal element of a poset P, $L_P(x) = \emptyset$ and we only check the condition $U_P(y) \subseteq U_P(x)$ for an $x < y$-addition on an incomparable pair x and y. The next result deals with $x < y$-additions on a minimal element x.

Theorem 2.3. Let G be a UB-graph and P be a poset in $\mathcal{P}_{UB}(G)$. The poset P is obtained from $\text{can}(P)$ by $x < y$-additions only, where x is a minimal element of the poset at each step.

Proof. Since P is finite and every deletion reduces the number of comparable pairs in P, we obtain the following sequence of $x < y$-deletions, where x is a minimal element of the poset of each step:

$$ P \xrightarrow{x < y - \text{deletion}} \ldots \xrightarrow{x < y - \text{deletion}} \text{can}(P) = \text{can}(G), $$

In each step of this sequence of $x < y$-deletions, $U_{P_{x < y}}(x) \supseteq U_{P_{x < y}}(y)$, x is incomparable with y in $P_{x < y}$ and a minimal element of $P_{x < y}$, and $y \notin \text{max}(P_{x < y})$. Thus the inverse operations of the above $x < y$-deletions are $x < y$-additions on x, y satisfying that $x \parallel_P y$, $U_P(x) \supseteq U_P(y)$, x is a minimal element of P and y is not a maximal element of P. So we obtain the following sequence of $x < y$-additions, where x is a minimal element of the poset at each step.

$$ P \xleftarrow{x < y - \text{addition}} \ldots \xleftarrow{x < y - \text{addition}} \text{can}(P) = \text{can}(G). $$

From this result we obtain the next result.

Theorem 2.4. Let G be a UB-graph and P, Q be posets in $\mathcal{P}_{UB}(G)$. The poset P can be transformed into Q by a sequence of $x < y$-deletions and $x < y$-additions, where x is a minimal element of the poset at each step and all the deletions can precede all the additions.

Proof. As in the proof of Theorem 2.3, P can be reduced to $\text{can}(G)$ by $x < y$-deletions and then $\text{can}(G)$ can be enlarged to Q by $x < y$-additions, where x is always a minimal element of the poset at each step.

Acknowledgments. We thank Prof. H.Era and referees for their valuable suggestions.

References

