In search for Lindelöf C_p’s

Rau Shan Z. Buzyakova

Abstract. It is shown that if X is a first-countable countably compact subspace of ordinals then $C_p(X)$ is Lindelöf. This result is used to construct an example of a countably compact space X such that the extent of $C_p(X)$ is less than the Lindelöf number of $C_p(X)$. This example answers negatively Reznichenko’s question whether Baturov’s theorem holds for countably compact spaces.

Keywords: $C_p(X)$, space of ordinals, Lindelöf space

Classification: 54C35, 54D20, 54F05

1. Introduction

We prove that $C_p(X)$ is Lindelöf for every first-countable countably compact subspace of ordinals. Thus, we widen the class of all spaces X for which it is known that $C_p(X)$ is Lindelöf. This result gives some possible directions where one might find other spaces with Lindelöf C_p’s (see questions in Section 3). Using the main result we construct an example of a countably compact space X such that $l(C_p(X)) \neq e(C_p(X))$. In the above equality $l(Y)$ stands for Lindelöf number, that is, the smallest infinite cardinal τ such that every open covering of Y contains a subcovering of cardinality $\leq \tau$. And $e(Y)$ is the extent of Y defined as the supremum of cardinalities of closed discrete subsets. This example answers Reznichenko’s question whether Baturov’s theorem [BAT] holds for countably compact spaces. Recall that Baturov’s theorem states that $l(Y) = e(Y)$ for every $Y \subset C_p(X)$, where X is a Σ-Lindelöf space. A counterexample to Reznichenko’s question also answers negatively the question posed in [BUZ] whether $C_p(X)$ is a D-space if X is countably-compact. The notion of D-space was introduced by Eric van Douwen [DOU].

A neighborhood assignment for a space X is a function φ from X to the topology of X such that $x \in \varphi(x)$ for any $x \in X$. A space X is a D-space, if for any neighborhood assignment φ for X there exists a closed discrete subset D of X such that $X = \bigcup_{d \in D} \varphi(d)$.

Throughout the paper, all spaces are assumed to be Tychonov. By R we denote the space of all real numbers endowed with standard topology. In notation and terminology we will follow [ARH] and [ENG].

Research supported by PSC-CUNY grant 64457-00 33.
2. Main result

Let \(\tau_\omega = \{ \alpha \leq \tau : cf(\alpha) \leq \omega \} \). Since in this section we deal only with \(\tau_\omega \)'s and their function spaces, let us agree that for any \(\alpha, \beta \in (\tau + 1) \), by the interval \([\alpha, \beta]\) we mean the set \(\{ \gamma \in \tau_\omega : \alpha \leq \gamma \leq \beta \} \) (the same concerns open and half-open intervals). This agreement significantly simplifies our notation but is valid only within this section. If \(U \) is a standard open set of \(C_p(X) \) we say that \(U \) depends on a finite set \(\{x_1, \ldots, x_n\} \subset X \) if there exist \(B_1, \ldots, B_n \) open in \(R \) such that \(U = \{ f \in C_p(X) : f(x_i) \in B_i \text{ for } i \leq n \} \).

Lemma 2.2. If \(A \subset \tau_\omega \) is countable, then there exists an \(\omega \)-support \(B \) of \(A \).

Proof: For each \(a \in A \) non-isolated in \(\tau_\omega \), fix a countable strictly increasing sequence \(X_a \) of isolated ordinals converging to \(a \). Let \(B = A \cup \{0\} \cup (\bigcup_{a \in A} X_a) \).

The set \(B \) is countable as a countable union of countable sets. Conditions (1) and (2) are met by definition. Let us verify (3). Take any \(b \in B \) non-isolated in \(\tau_\omega \). Since all \(X_a \)'s consist of isolated ordinals, we have \(b \in A \). Therefore, \(b \) is an accumulation point for \(X_b \subset B \) and, as a consequence, for \(B \) as well.

Notice that if \(A_n \subset \tau_\omega \) is an \(\omega \)-support of itself for each \(n \), then \(\bigcup_n A_n \) is an \(\omega \)-support of itself as well.

Definition 2.3. Let \(A \subset \tau_\omega \) be countable and an \(\omega \)-support of itself. Let \(f \in C_p(\tau_\omega) \). Define \(cf,A \) as follows: \(cf,A(x) = f(a_x) \), where \(a_x = \sup\{a \in A : a \leq x\} \).

First notice that the set \(\{a \in A : a \leq x\} \) is not empty for every \(x \) because \(0 \in A \) (see the definition of \(\omega \)-support). Since \(A \) is countable and \(\tau_\omega \) contains all ordinals not exceeding \(\tau \) of countable cofinality, \(a_x \) exists for each \(x \). And since the supremum is unique, \(cf,A \) is a well-defined function of \(\tau_\omega \) to \(R \). Also, notice that \(cf,A \) coincides with \(f \) on \(A \) as \(a_x = x \) for each \(x \in A \).

Lemma 2.4. Let \(A \subset \tau_\omega \) be countable and an \(\omega \)-support of itself. Let \(f \in C_p(\tau_\omega) \). Then \(cf,A \in C_p(\tau_\omega) \).

Proof: To show continuity of \(cf,A \) it is enough to show that for each \(x_n \rightarrow x \) in \(\tau_\omega \) one can find a subsequence \(\{x_{m_n}\} \subset \{x_n\} \) such that \(cf,A(x_{m_n}) \rightarrow cf,A(x) \). If \(x_n \in A \) for infinitely many of \(n \)'s then we are done since \(cf,A = f \) on \(A \).

Otherwise, we can assume that all \(x_n \)'s are not in \(A \) and are distinct. For each \(y \in \tau_\omega \), put \(b_y = \tau \) if \(\{y, \tau\} \cap A = \emptyset \) and \(b_y = \inf\{b \in A : b > y\} \) otherwise. For
each \(x_n\), consider \([a_{x_n}, b_{x_n}]\), where \(a_{x_n}\) is from the definition of \(c_{f,A}\). Notice that either \(b_y = \tau\) or \(b_{y'} = \tau\) is an isolated ordinal. Indeed, if \(b_y \neq \tau\) then \(b_{y'} = \inf\{b \in A : b > y\} \in A\). And since \(A\) is an \(\omega\)-support of itself, \(b_{y'}\) is an isolated ordinal (see condition (3) in Definition 2.1).

The intervals \([a_{x_n}, b_{x_n}]\) are either disjoint or coincide. Assume they coincide for infinitely many of \(m\)'s with \([a_{x_3}, b_{x_3}]\). If \(b_{x_3}\) is isolated then \(x \in [a_{x_3}, b_{x_3}]\) and \(c_{f,A}([a_{x_3}, b_{x_3}])\) is a singleton. Therefore, \(c_{f,A}(x_m) \rightarrow c_{f,A}(x)\). Otherwise \(b_{x_3}\) is not isolated and equal to \(\tau\). In this case \((a_{x_3}, \tau] \cap A = \emptyset\) and \(c_{f,A}([a_{x_3}, b_{x_3}])\) is a singleton again.

If the intervals are mutually disjoint then \(a_{x_n} \rightarrow x \in \bar{A}\). And now use the facts that \(f = c_{f,A}\) on \(\bar{A}\) and \(c_{f,A}(x_m) = f(a_{x_n})\).

\(\Box\)

Lemma 2.5. Let \(A \subseteq \tau_\omega\) be countable and an \(\omega\)-support of itself and \(B\) be a base of \(R\). Let \(f \in C_p(\tau_\omega)\). Let \(U \subset C_p(\tau_\omega)\) be open and contain \(c_{f,A}\). Then there exist sequences \(\{[a_1, b_1], \ldots, [a_n, b_n]\}\) and \(\{B_1, \ldots, B_n\}\) with the following properties:

\begin{enumerate}
 \item \(a_i \in A\);
 \item \(b_i \in A\) for \(i < n\) and \(b_n = \tau\);
 \item \(B_i \in B\);
 \item \(c_{f,A} \in \{g \in C_p(\tau_\omega) : g([a_i, b_i]) \subseteq B_i\text{ if }a_i \neq b_i\text{ and }g(a_i) \in B_i\text{ if }a_i = b_i\}\).
\end{enumerate}

\textbf{Proof:} Without loss of generality, there exist \(c_1 < \ldots < c_i \in \tau_\omega\) and \(V_1, \ldots, V_i \in B\) such that \(U = \{g \in C_p(\tau_\omega) : g(c_i) \in V_i\}\). We may assume that \(c_1 \geq \sup(\bar{A})\).

\textbf{Step 1.}

Let \(m = \min\{i : c_i \geq \sup(\bar{A})\}\). Find \(B_1 \in B\) such that \(c_{f,A}(c_m) \in B_1 \subset V_m \cap V_{m+1} \cap \cdots \cap V_i\). Note that such a \(B_1\) exists since \(c_{f,A}\) is constant starting from \(\sup(\bar{A})\). Find \(a_1 \in A\) such that \(c_{f,A}([a_1, \tau]) \subseteq B_1\) and \(a_1 > c_i\) for all \(i < m\). Due to continuity of \(c_{f,A}\), such an \(a_1\) can be found somewhere close to \(\sup(\bar{A})\) (if \(\sup(\bar{A}) \in A\), it can serve as \(a_1\)). Put \(b_1 = \tau\).

\textbf{Step \(k \leq 1\).}

If \(c_i \geq a_{k-1}\) for all \(i\), stop construction. Let \(m = \max\{i : c_i < a_{k-1}\}\). Let \(a'_k = \sup\{a \in A : a \leq c_m\}\) and \(b_k = \inf\{a \in A : c_m \leq a\}\). Obviously \(b_k \in A\). If \(b_k = c_m = a'_k\) put \(a_k = c_m\) and \(B_k = V_m\). Otherwise, find \(B_k \in B\) such that \(c_{f,A}([a'_k, b_k]) \subset B_k \subset V_m\). Such a \(B_k\) exists because \(c_{f,A}([a'_k, b_k]) = f(a'_k) = c_{f,A}(c_m)\). If \(a'_k = c_m-1\) we also require that \(B_k \subset V_m \cap V_{m-1}\). If \(a'_k \in A\) put \(a_k = a'_k\). Otherwise \(a'_k\) is an accumulation point for \(A\). And, due to continuity, we can find an \(a_k \in A\) such that \([a_k, a'_k]\) contains no \(c_i\)'s and \(c_{f,A}([a_k, b_k]) \subset B_k\).

Re-enumerate \(B_1, \ldots, B_n\) and corresponding intervals in reverse order. Properties (1)--(4) hold by our construction. \(\Box\)
Theorem 2.6. \(C_p(\tau_\omega) \) is Lindelöf for any \(\tau \).

Proof: Let \(B \) be a countable base of \(R \). Let \(\mathcal{U} \) be an arbitrary open covering of \(C_p(\tau_\omega) \). We will choose a countable subcovering \(\{ U_n \} \) inductively. From Step 2, we will follow our induction using elements in \(\mathcal{S}_1 \) defined at Step 1. However, at each Step \(n \) we might need to enlarge our inductive set by new elements. To ensure that every old element keeps the old tag we agree to enumerate \(\mathcal{S}_1 \) by prime numbers while new elements added at Step \(n \) by numbers \(p^{n+1} \), where \(p \) is any prime.

Step 1.

Take any \(U_1 \in \mathcal{U} \). The set \(U_1 \) depends on finite \(X_1 \). Let \(A_1 \) be an \(\omega \)-support of \(X_1 \). Let \(\mathcal{S}_1 \) consist of all pairs \(([a_1, b_1], \ldots, [a_k, b_k]), \{ B_1, \ldots, B_k \}) \), where \(B_i \in B, a_i \in A_1, b_i \in A_1 \) for \(i < k \), \(b_k = \tau \), and \(k \) is any natural number. Enumerate \(\mathcal{S}_1 \) by prime numbers.

Step \(n \).

If \(U_1 \cup \cdots \cup U_{n-1} \) covers \(C_p(\tau_\omega) \) stop induction. Otherwise, take the first \(S = ([a_1, b_1], \ldots, [a_k, b_k]), \{ B_1, \ldots, B_k \}) \in \mathcal{S}_{n-1} \) such that there exist \(f \) and \(U_n \in \mathcal{U} \) containing \(f \) and the following property is satisfied.

Property. \(f \in \{ g \in C_p(\tau_\omega) : g([a_i, b_i]) \subset B_i \text{ if } a_i \neq b_i \text{ and } g(a_i) \in B_i \text{ if } a_i = b_i \} \subset U_n. \)

If no such an \(S \) exists, just take any \(U_n \in \mathcal{U} \) such that \(U_n \setminus \bigcup_{i<n} U_i \neq \emptyset. \)
The set \(U_n \) depends on \(X_n \). Let \(A_n \) be an \(\omega \)-support of \(A_{n-1} \cup X_n \). Let \(\mathcal{S}_n \) be the set of all pairs \(([a_1, b_1], \ldots, [a_k, b_k]), \{ B_1, \ldots, B_k \}) \), where \(B_i \in B, a_i \in A_n, b_i \in A_n \) for \(i < k \), \(b_k = \tau \), and \(k \) is any natural number. Enumerate \(\mathcal{S}_n \setminus \mathcal{S}_{n-1} \) by numbers \(p^{n+1} \), where \(p \) is any prime number. Enumeration on \(\mathcal{S}_{n-1} \) is left unchanged.

Let us show that \(\bigcup_n U_n \) covers \(C_p(\tau_\omega) \). Take any \(f \in C_p(\tau_\omega) \). Let \(A = \bigcup_n A_n \). The set \(A \) is an \(\omega \)-support of itself. Consider the function \(c_{f,A} \). Since \(\mathcal{U} \) covers \(C_p(\tau_\omega) \) there exists \(U \in \mathcal{U} \) that contains \(c_{f,A} \).

By Lemma 2.5, there exists a pair \(S = ([a_1, b_1], \ldots, [a_k, b_k]), \{ B_1, \ldots, B_k \}) \) with the following properties:

1. \(a_i \in A; \)
2. \(b_i \in A \) for \(i < k \) and \(b_k = \tau; \)
3. \(B_i \in B; \)
4. \(c_{f,A} \in \{ g \in C_p(\tau_\omega) : g([a_i, b_i]) \subset B_i \text{ if } a_i \neq b_i \text{ and } g(a_i) \in B_i \text{ if } a_i = b_i \} \subset U. \)

That is, \(S \in \mathcal{S}_n \) for some \(n \). Therefore, starting from some Step \(p^{n+1} \), \(S \) must satisfy the Property and eventually it will be the first such. Therefore, \(c_{f,A} \) must be covered by some \(U_m \) chosen at Step \(m \). However, \(U_m \) depends on \(X_m \subset A_m \subset A \) while \(c_{f,A} \) coincides with \(f \) on \(A \). Therefore, \(U_m \) covers \(f. \)
Since any first-countable countably compact subspace of ordinals is homeomorphic to τ_ω for some τ we can restate our result as follows.

Theorem 2.7. Let X be a first-countable countably compact subspace of ordinals. Then $C_p(X)$ is Lindelöf.

3. Corollaries and related questions

Many papers are devoted to finding classes of spaces with Lindelöf C_p’s. How good a space should be to have such a nice covering property as Lindelöfness in its function space? It is known that even a linearly orderable first countable compactum is not such unless it is metrizable. This fact follows from the theorem of Nahmanson in [NAH] (a detailed proof is in [ARH]). His theorem states that if X is a linearly ordered compactum then the Lindelöf number of $C_p(X)$ equals the weight of X. Even first-countable compacta with metrizable closures of countable sets do not have to have Lindelöf C_p’s. Again this follows from the Nahmanson theorem and existence of non-metrizable first countable linearly ordered compacta in which closures of countable sets are metrizable (an example of such a compactum is Aronszajn continuum).

However, what happens if we strengthen the requirement of metrizable closures to countable closures? Notice that spaces in our main result (Theorem 2.7) are first-countable countably compact and, the closures of countable sets are countable. Therefore, the following questions might be of interest.

Question 3.1. Let X be countably compact and first countable. Assume also that the closure of any countable set is countable in X. Is then $C_p(X)$ Lindelöf?

Question 3.2. Let X be first-countable and countably compact. Assume also that the closure of any countable set is countable in X. Is then $C_p(X)^\omega$ Lindelöf?

Question 3.3. Let $X = X_1 \oplus \cdots \oplus X_n \oplus \ldots$, where each X_n is first-countable and countably compact. Assume also that the closure of any countable set is countable in X_n. Is then $C_p(X)$ Lindelöf?

Notice that spaces in Question 3.3 can be obtained from spaces in Question 3.1 by removing a point of countable character. Therefore the following question might worth consideration.

Question 3.4. Suppose that $C_p(X)$ is Lindelöf for a space X. Let $x \in X$ have countable character in X. Is $C_p(X \setminus \{x\})$ Lindelöf? What if X is first countable (countably compact)?

So we throw away a point and are hoping that what is left still has a decent C_p. Why do we not add one point? In general, adding a point can spoil C_p. For example, $C_p(\omega_1)$ is Lindelöf by Theorem 2.7, while $C_p(\omega_1 + 1)$ is not by Asanov’s theorem [ASA]. Asanov’s theorem implies that if $C_p(X)$ is Lindelöf then the tightness of X is countable (the tightness $t(X)$ of a space X is the smallest infinite
cardinal number τ such that for any $A \subset X$ and any $x \in A$ there exists $B \subset A$ of cardinality not exceeding τ such that $x \in B$). That is, by adding one point \{\omega_1\} we lose Lindelöfness of the function space. This observation motivates the following question.

Question 3.5 (Arhangelskii). Let $C_p(X \setminus \{x\})$ be Lindelöf and let x have countable tightness in X. Is $C_p(X)$ Lindelöf? What if X is first countable?

Our next corollary is an answer to the Reznichenko’s question whether Baturov’s theorem [BAT] holds for countably compact spaces. Baturov’s theorem states that $l(Y) = e(Y)$ for every $Y \subset C_p(X)$, where X is a Σ-Lindelöf space.

We answer Reznichenko’s question by constructing a countably compact space X where the above equality fails to hold.

In the following example, by $[\alpha, \beta]_X$ we denote the set $[\alpha, \beta] \cap X$, where $\alpha, \beta \in \tau$ and $X \subset \tau$.

Example 3.6. Let $X = \{\alpha \leq \omega_2 : cf(\alpha) \neq \omega_1\}$. Then $l(C_p(X)) = \omega_2$ while $e(C_p(X)) = \omega$.

Proof of $e(C_p(X)) = \omega$:

It suffices to show that any $F \subset C_p(X)$ of cardinality ω_1 has a complete accumulation point in $C_p(X)$. Due to cofinality, there exists $\gamma < \omega_2$ such that f is constant on $[\gamma, \omega_2)_X$ for each $f \in F$. We can also choose γ with countable cofinality. For each $f \in F$ let $f^* \in C_p(\gamma, \omega)$ be such that $f^* = f$ on $[0, \gamma)_{\gamma, \omega}$. Since $C_p(\gamma, \omega)$ is Lindelöf (Theorem 2.6), there exists $h^* \in C_p(\gamma, \omega)$ a complete accumulation point for $F^* = \{f^* : f \in F\}$. Define a function h as follows:

$$h(x) = \begin{cases} h^*(x) & \text{if } x \in [0, \gamma)_X, \\ h^*(\gamma) & \text{if } x \in [\gamma, \omega_2)_X. \end{cases}$$

No doubts, $h \in C_p(X)$. Let us show that h is a complete accumulation point for F. Let $h \in U = \{g \in C_p(X) : g(c_i) \in B_i\}$, where $c_1 < \cdots < c_n \in X$ and B_1, \ldots, B_n are open in R. We need to show that $F \cap U$ is uncountable. It does not hurt if we make U smaller by assuming that $c_k = \gamma$ for some $k \leq n$. Since h is constant on $[\gamma, \omega_2)_X$ we may assume that $B_j = B_k$ for all $j \geq k$.

The set $U^* = \{g \in C_p(\gamma, \omega) : g(c_i) \in B_i, i \leq k\}$ is an open neighborhood of h^*. Since h^* is a complete accumulation point for F^*, $F^* \cap U^*$ is uncountable. If $f^* \in U^* \cap F^*$ then $f^*(c_k) \in B_k$. Therefore, for $j > k$, $f(c_j) = f(c_k) \in B_j$ and $f(c_j) \in B_j$ for $j \leq k$ because f coincides with f^* on $[0, \gamma)_X = [0, \gamma)_{\gamma, \omega}$. Therefore, $f \in F \cap U$ and $f \cap U$ is uncountable.

Proof of $l(C_p(X)) = \omega_2$:

Asanov’s theorem [ASA] implies that $t(X) \leq l(C_p(X))$. Since $t(X) = \omega_2$, $l(C_p(X)) \geq \omega_2$. And we actually have equality because the weight of X is ω_2. \qed
In [BUZ], the author proves that $C_p(X)$ is hereditarily a D-space if X is compact. This result motivated the D-version of Reznichenko’s question whether $C_p(X)$ is a hereditary D-space if X is countably compact. From the definition of a D-space it is easy to conclude that $l(X) = e(X)$ for every D-space X. Therefore, Example 3.6 serves as a counterexample to this question.

One of the central questions on D-spaces posed by van Douwen is whether every Lindelöf space is a D-space. In search for a counterexample (if there exists one) it might be worth to consider the following question.

Question 3.7. Is $C_p(\tau_\omega)$ a D-space for $\tau \geq \omega_2$?

Note that all theorems on D-spaces known so far do not cover the spaces in the above question.

After-Submission Remarks. After this paper was submitted, A. Dow and P. Simon answered Question 3.1 in negative. Therefore, it is reasonable to assume now that $C_p(X)$ in Question 3.2 and $C_p(X_n)$’s in Question 3.3 are Lindelöf.

Acknowledgment. The author would like to thank the referee for valuable remarks and suggestions.

References

Department of Mathematics, Brooklyn College, Brooklyn, NY 11210, USA

E-mail: RaushanB@brooklyn.cuny.edu

(Received May 29, 2003, revised October 10, 2003)