Complete hypersurfaces with constant scalar curvature in a sphere

Ximin Liu, Hongxia Li

Abstract. In this paper, by using Cheng-Yau’s self-adjoint operator \Box, we study the complete hypersurfaces in a sphere with constant scalar curvature.

Keywords: hypersurface, sphere, scalar curvature

Classification: 53C42, 53A10

1. Introduction

Let S^{n+1} be an $(n+1)$-dimensional unit sphere with constant sectional curvature 1, let M^n be an n-dimensional hypersurface in S^{n+1}, and e_1, \ldots, e_n a local orthonormal frame field on M^n, $\omega_1, \ldots, \omega_n$ its dual coframe field. Then the second fundamental form of M^n is

$$h = \sum_{i,j} h_{ij} \omega_i \otimes \omega_j.$$ \hspace{1cm} (1)

Further, near any given point $p \in M^n$, we can choose a local frame field e_1, \ldots, e_n so that at p, $\sum_{i,j} h_{ij} \omega_i \otimes \omega_j = \sum_i k_i \omega_i \otimes \omega_i$. Then the Gauss equation says

$$R_{ijij} = 1 + k_i k_j, \hspace{0.5cm} i \neq j.$$ \hspace{1cm} (2)

$$n(n-1)(R-1) = n^2 H^2 - |h|^2,$$ \hspace{1cm} (3)

where R is the normalized scalar curvature, $H = \frac{1}{n} \sum_i k_i$ the mean curvature and $|h|^2 = \sum_i k_i^2$ the norm square of the second fundamental form of M^n.

As it is well known, there are many rigidity results for minimal hypersurfaces or hypersurfaces with constant mean curvature H in S^{n+1} by use of J. Simons’ method, for example, see [1], [3], [4], [6], [9], etc.

On the other hand, Cheng-Yau [2] introduced a new self-adjoint differential operator \Box to study the hypersurfaces with constant scalar curvature. Later, Li [5] obtained interesting rigidity results for hypersurfaces with constant scalar curvature in space-forms using the Cheng-Yau’s self-adjoint operator \Box.

In the present paper, we use Cheng-Yau’s self-adjoint operator \Box to study the complete hypersurfaces in a sphere with constant scalar curvature, and prove the following theorem:
Theorem. Let M^n be an n-dimensional ($n \geq 3$) complete hypersurface with constant normalized scalar curvature R in S^{n+1}. If

1. $\bar{R} = R - 1 \geq 0$,
2. the mean curvature H of M^n satisfies

$$\bar{R} \leq \sup H^2 \leq \frac{1}{n^2} \left((n-1)^2 \frac{n\bar{R} + 2}{n-2} - 2(n-1) + \frac{n-2}{n\bar{R} + 2} \right),$$

then either

$$\sup H^2 = \bar{R}$$

and M^n is a totally umbilical hypersurface; or

$$\sup H^2 = \frac{1}{n^2} \left((n-1)^2 \frac{n\bar{R} + 2}{n-2} - 2(n-1) + \frac{n-2}{n\bar{R} + 2} \right),$$

and $M^n = S^1(\sqrt{1-t^2}) \times S^{n-1}(r)$, $r = \sqrt{\frac{n-2}{n\bar{R}+1}}$.

2. Preliminaries

Let M^n be an n-dimensional complete hypersurface in S^{n+1}. We choose a local orthonormal frame e_1, \ldots, e_{n+1} in S^{n+1} such that at each point of M^n, e_1, \ldots, e_n span the tangent space of M^n and form an orthonormal frame there. Let $\omega_1, \ldots, \omega_{n+1}$ be its dual coframe. In this paper, we use the following convention on the range of indices:

$$1 \leq A, B, C, \ldots \leq n+1; \quad 1 \leq i, j, k, \ldots \leq n.$$

Then the structure equations of S^{n+1} are given by

1. $d\omega_A = \sum_B \omega_{AB} \wedge \omega_B$, $\omega_{AB} + \omega_{BA} = 0$,
2. $d\omega_{AB} = \sum_C \omega_{AC} \wedge \omega_{CB} - \frac{1}{2} \sum_{C,D} K_{ABCD} \omega_C \wedge \omega_D$,
3. $K_{ABCD} = (\delta_{AC} \delta_{BD} - \delta_{AD} \delta_{BC})$.

Restricting these forms to M^n, we have

4. $\omega_{n+1} = 0$.

From Cartan’s lemma we can write

5. $\omega_{n+1} = \sum_j h_{ij} \omega_j$, $h_{ij} = h_{ji}$.
From these formulas, we obtain the structure equations of M^n:

$$d\omega_i = \sum_j \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0,$$

$$d\omega_{ij} = \sum_k \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l,$$

$$R_{ijkl} = (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + (h_{ik}h_{jl} - h_{il}h_{jk}),$$

where R_{ijkl} are the components of the curvature tensor of M^n and

$$h = \sum_{i,j} h_{ij} \omega_i \otimes \omega_j$$

is the second fundamental form of M^n. We also have

$$R_{ij} = (n-1)\delta_{ij} + nHh_{ij} - \sum_k h_{ik}h_{kj},$$

$$n(n-1)(R-1) = n^2H^2 - |h|^2,$$

where R is the normalized scalar curvature, and H the mean curvature.

Define the first and the second covariant derivatives of h_{ij}, say h_{ijk} and h_{ijkl} by

$$\sum_k h_{ijk}\omega_k = dh_{ij} + \sum_k h_{kj}\omega_{ki} + \sum_k h_{ik}\omega_{kj},$$

$$\sum_l h_{ijkl}\omega_l = dh_{ijk} + \sum_m h_{mj}\omega_{mi} + \sum_m h_{im}\omega_{mj} + \sum_m h_{ijm}\omega_{mk}.$$

Then we have the Codazzi equation

$$h_{ijk} = h_{ikj},$$

and the Ricci’s identity

$$h_{ijkl} - h_{ijlk} = \sum_m h_{mj}R_{mikl} + \sum_m h_{im}R_{mjkl}.$$

For a C^2-function f defined on M^n, we define its gradient and Hessian (f_{ij}) by the following formulas

$$df = \sum_i f_i \omega_i, \quad \sum_j f_{ij} \omega_j = df + \sum_j f_j \omega_{ji}. $$
The Laplacian of \(f \) is defined by \(\Delta f = \sum_i f_{ii} \).

Let \(\phi = \sum_{ij} \phi_{ij} \omega_i \otimes \omega_j \) be a symmetric tensor defined on \(M^n \), where
\[
(20) \quad \phi_{ij} = nH \delta_{ij} - h_{ij}.
\]

Following Cheng-Yau [2], we introduce the operator \(\Box \) associated to \(\phi \) acting on any \(C^2 \)-function \(f \) by
\[
(21) \quad \Box f = \sum_{i,j} \phi_{ij} f_{ij} = \sum_{i,j} (nH \delta_{ij} - h_{ij}) f_{ij}.
\]

Since \(\phi_{ij} \) is divergence-free, it follows [2] that the operator \(\Box \) is self-adjoint relative to the \(L^2 \) inner product of \(M^n \), i.e.
\[
(22) \quad \int_{M^n} f \Box g = \int_{M^n} g \Box f.
\]

We can choose a local frame field \(e_1, \ldots e_n \) at any point \(p \in M^n \), such that \(h_{ij} = k_i \delta_{ij} \) at \(p \), and by use of (21) and (14), we have
\[
(23) \quad \Box (nH) = nH \Delta (nH) - \sum_i k_i (nH)_{ii}
\]
\[
= \frac{1}{2} \Delta (nH)^2 - \sum_i (nH)_{ii}^2 - \sum_i k_i (nH)_{ii}
\]
\[
= \frac{1}{2} n(n-1) \Delta R + \frac{1}{2} \Delta |h|^2 - n^2 |\nabla H|^2 - \sum_i k_i (nH)_{ii}.
\]

On the other hand, through a standard calculation by use of (17) and (18), we get
\[
(24) \quad \frac{1}{2} \Delta |h|^2 = \sum_{i,j,k} h_{ijk}^2 + \sum_i k_i (nH)_{ii} + \frac{1}{2} \sum_{i,j} R_{ijij} (k_i - k_j)^2.
\]

Putting (24) into (23), we have
\[
(25) \quad \Box (nH) = \frac{1}{2} n(n-1) \Delta R + |\nabla h|^2 - n^2 |\nabla H|^2 + \frac{1}{2} \sum_{i,j} R_{ijij} (k_i - k_j)^2.
\]

From (11), we have \(R_{ijij} = 1 + k_i k_j, \ i \neq j \), and by putting this into (25), we obtain
\[
(26) \quad \Box (nH) = \frac{1}{2} n(n-1) \Delta R + |\nabla h|^2 - n^2 |\nabla H|^2 + n|h|^2 - n^2 H^2 - |h|^4 + nH \sum_i k_i^2.
\]
Let $\mu_i = k_i - H$ and $|Z|^2 = \sum_i \mu_i^2$. We have

$$\sum_i \mu_i = 0, \quad |Z|^2 = |h|^2 - nH^2,$$

$$\sum_i k_i^3 = \sum_i \mu_i^3 + 3H|Z|^2 + nH^3.$$ \hfill (27)

From (26)–(28), we get

$$\Box(nH) = \frac{1}{2} n(n-1) \Delta R + |\nabla h|^2 - n^2 |\nabla H|^2$$

$$+ |Z|^2 (n + nH^2 - |Z|^2) + nH \sum_i \mu_i^3.$$ \hfill (29)

We need the following algebraic lemma due to M. Okumura [7] (see also [1]).

Lemma 2.1. Let μ_i, $i = 1, \ldots, n$, be real numbers such that $\sum_i \mu_i = 0$ and $\sum_i \mu_i^2 = \beta^2$, where $\beta = \text{constant} \geq 0$. Then

$$- \frac{n - 2}{\sqrt{n(n-1)}} \beta^3 \leq \sum_i \mu_i^3 \leq \frac{n - 2}{\sqrt{n(n-1)}} \beta^3,$$ \hfill (30)

and the equality holds in (30) if and only if at least $(n - 1)$ of the μ_i are equal.

By use of Lemma 2.1, we have

$$\Box(nH) \geq \frac{1}{2} n(n-1) \Delta R + |\nabla h|^2 - n^2 |\nabla H|^2$$

$$+ (|h|^2 - nH^2)(n + 2nH^2 - |h|^2 - \frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{|h|^2 - nH^2}).$$ \hfill (31)

3. **Proof of Theorem**

The following lemma is essentially due to Cheng-Yau [2] (see also [5]).

Lemma 3.1. Let M be an n-dimensional hypersurface in S^{n+1}. Suppose that the normalized scalar curvature $R = \text{constant}$ and $R \geq 1$. Then $|\nabla h|^2 \geq n^2 |\nabla H|^2$.

From the assumption of Theorem that R is constant and $\bar{R} = R - 1 \geq 0$ and Lemma 3.1 we have

$$\Box(nH) \geq (|h|^2 - nH^2)(n + 2nH^2 - |h|^2 - \frac{n(n-2)}{\sqrt{n(n-1)}} H \sqrt{|h|^2 - nH^2}).$$ \hfill (32)
By Gauss equation (14) we know that
\begin{equation}
|Z|^2 = |h|^2 - nH^2 = \frac{n-1}{n}(|h|^2 - n\bar{R}).
\end{equation}

From (32) and (33) we have
\begin{equation}
\Box(nH) \geq \frac{n-1}{n}(|h|^2 - n\bar{R})\phi_H(|h|),
\end{equation}
where
\[
\phi_H(|h|) = n + 2nH^2 - |h|^2 - \frac{n(n-2)}{\sqrt{n(n-1)}}H\sqrt{|h|^2 - nH^2}.
\]

By (33) we can write \(\phi_H(|h|)\) as
\begin{equation}
\phi_H(|h|) = n + 2(n-1)\bar{R} - \frac{n-2}{n}|h|^2 - \frac{n-2}{n}\sqrt{(n(n-1)R + |h|^2)(|h|^2 - n\bar{R})}.
\end{equation}

Therefore (34) becomes
\begin{equation}
\Box(nH) \geq \frac{n-1}{n}(|h|^2 - n\bar{R})\phi_H(|h|).
\end{equation}

It is a direct check that our assumption
\[
\sup H^2 \leq \frac{1}{n^2}\left((n-1)^2\frac{n\bar{R} + 2}{n-2} - 2(n-1) + \frac{n-2}{n\bar{R} + 2}\right)
\]
is equivalent to
\begin{equation}
\sup |h|^2 \leq \frac{n}{(n-2)(n\bar{R} - 2)}\left[n(n-1)\bar{R}^2 + 4(n-1)\bar{R} + n\right],
\end{equation}
i.e.
\begin{equation}
(n + 2(n-1)\bar{R} - \frac{n-2}{n}\sup |h|^2)^2
\end{equation}
\[
\geq \frac{(n-2)^2}{n^2}(n(n-1)\bar{R} + \sup |h|^2)(\sup |h|^2 - n\bar{R}).
\]

But it is clear from (37) that (38) is equivalent to
\begin{equation}
(n + 2(n-1)\bar{R} - \frac{n-2}{n}\sup |h|^2)
\end{equation}
\[
\geq \frac{n-2}{n}\sqrt{(n(n-1)\bar{R} + \sup |h|^2)(\sup |h|^2 - n\bar{R})}.
\]
So under the hypothesis that
\[
\sup H^2 \leq \frac{1}{n^2} \left[(n-1)^2 \frac{n\bar{R} + 2}{n-2} - 2(n-1) + \frac{n-2}{n\bar{R} + 2} \right],
\]
we have
\[
(40) \quad \phi_R(\sqrt{\sup |h|^2}) \geq 0.
\]

On the other hand,
\[
\Box(nH) = \sum_{i,j} (nH\delta_{ij} - nh_{ij})(nH)_{ij} = \sum_{i} (nH - nh_{ii})(nH)_{ii}
\]
\[
= n \sum_{i} H(nH)_{ii} - n \sum_{i} k_i(nH)_{ii} \leq (|H|_{\text{max}} - C) \Delta(nH),
\]
where $|H|_{\text{max}}$ is the maximum of the mean curvature H and $C = \min k_i$ is the minimum of the principal curvatures of M^n.

Now we need the following maximum principle at infinity for complete manifolds due to Omori [8] and Yau [10]:

Lemma 3.2. Let M^n be an n-dimensional complete Riemannian manifold whose sectional curvature is bounded from below and $f : M^n \to \mathbb{R}$ a smooth function bounded from below. Then for each $\varepsilon > 0$ there exists a point $p_\varepsilon \in M^n$ such that

(i) $|\nabla f|(p_\varepsilon) < \varepsilon$,

(ii) $\Delta f(p_\varepsilon) > -\varepsilon$,

(iii) $\inf f \leq f(p_\varepsilon) \leq \inf f + \varepsilon$.

Since the scalar curvature of M is a constant, from the hypothesis that $\bar{R} \leq \sup H^2 \leq \frac{1}{n^2} \left[(n-1)^2 \frac{n\bar{R} + 2}{n-2} - 2(n-1) + \frac{n-2}{n\bar{R} + 2} \right]$, and Gauss equation (14), we know the squared norm $|h|^2$ of the second fundamental form is bounded from above, from (11) we know that the sectional curvature is bounded from below. So we may apply Lemma 3.2 to the smooth function f on M^n defined by

\[
f = \frac{1}{\sqrt{1 + (nH)^2}}.
\]

It is immediate to check that
\[
|\nabla f|^2 = \frac{1}{4} \frac{|\nabla (nH)^2|^2}{(1 + (nH)^2)^3}
\]
and that
\[
\Delta f = -\frac{1}{2} \frac{\Delta (nH)^2}{(1 + (nH)^2)^{3/2}} + \frac{3}{4} \frac{|\nabla (nH)^2|^2}{(1 + (nH)^2)^{5/2}}.
\]
By Lemma 3.2 we can find a sequence of points \(p_k \), \(k \in N \) in \(M^n \), such that

\[
\lim_{k \to \infty} f(p_k) = \inf f, \quad \Delta f(p_k) > -\frac{1}{k}, \quad |\nabla f|^2(p_k) < \frac{1}{k^2}.
\]

Using (44) in equations (42) and (43) and the fact that

\[
\lim_{k \to \infty} (nH)(p_k) = \sup_{p \in M^n} (nH)(p),
\]

we get

\[
-\frac{1}{k} \leq -\frac{1}{2}(1 + (nH)^2)^{3/2} - \frac{3}{k^2}(1 + (nH)^2)^{1/2}.
\]

Hence we obtain

\[
\frac{\Delta(nH)^2}{(1 + (nH)^2)^2}(p_k) < \frac{2}{k} \left(\frac{1}{\sqrt{1 + (nH)^2(p_k)}} + \frac{3}{k} \right).
\]

On the other hand, by (36) and (41), we have

\[
\frac{n-1}{n}(|h|^2 - n\bar{R})\phi_R(|h|) \leq \square(nH) \leq n(|H|_{\max} - C)\Delta(nH).
\]

At points \(p_k \) of the sequence given in (44), this becomes

\[
\frac{n-1}{n}(|h|^2(p_k) - n\bar{R})\phi_R(|h|(p_k)) \leq \square(nH(p_k)) \leq n(|H|_{\max} - C)\Delta(nH(p_k)).
\]

Letting \(k \to \infty \) and using (47) we have that the right hand side of (49) goes to zero, so we have either \(\frac{n-1}{n}(\sup |h|^2 - n\bar{R}) = 0 \), i.e. \(\sup H^2 = \bar{R} \), or \(\phi_R(\sqrt{\sup |h|^2}) = 0 \).

If \(\sup |h|^2 = n\bar{R} \), by (33) \(|Z|^2 = \frac{n-1}{n}(|h|^2 - n\bar{R}) \) we have

\[
\sup |Z|^2 = \frac{n-1}{n}(\sup |h|^2 - n\bar{R}) = 0, \text{ hence } |Z|^2 = 0 \text{ and } M^n \text{ is totally umbilical.}
\]

If \(\phi_R(\sqrt{\sup |h|^2}) = 0 \), it is easy to prove that

\[
\sup H^2 = \frac{1}{n^2}[(n-1)^2 + \frac{2(n-1)}{n-2} - 2(n-1) + \frac{n-2}{n-2}], \text{ hence equalities hold in (30) and Lemma 3.1, and it follows that } k_i = \text{constant for all } i \text{ and } (n-1) \text{ of the } k_i \text{'s are equal. After remuneration if necessary, we can assume that}
\]

\[
k_1 = k_2 = \cdots = k_{n-1}, \quad k_1 \neq k_n.
\]

Therefore, \(M^n \) is a isoparametric hypersurface in \(S^{n+1} \) with two distinct principal curvatures, hence \(M^n = S^1(\sqrt{1 - r^2}) \times S^{n-1}(r), k_1 = \cdots = k_{n-1} = \sqrt{1 - r^2}/r, k_1 = -r/\sqrt{1 - r^2}. \) From (14), it is easy to see that \(n(n-1)\bar{R} = (n-1)(n-2 - n^2)/r^2, \) thus \(r = \sqrt{\frac{n-2}{n(n+1)}}. \) This completes the proof of Theorem.

Acknowledgments. The authors would like to thank the referee for his comments on this paper.
Complete hypersurfaces with constant scalar curvature in a sphere

REFERENCES

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P.R. China
E-mail: xmliu@dlut.edu.cn

(Received October 7, 2004, revised January 7, 2005)