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The fundamental theorem of dynamical systems

Douglas E. Norton

Abstract. We propose the title of The Fundamental Theorem of Dynamical Systems for
a theorem of Charles Conley concerning the decomposition of spaces on which dynamical
systems are de�ned. First, we brie
y set the context and state the theorem. After some
de�nitions and preliminary results, based both on Conley's work and modi�cations to it,
we present a sketch of a proof of the result in the setting of the iteration of continuous
functions on compact metric spaces. Finally, we claim that this theorem should be called
The Fundamental Theorem of Dynamical Systems.
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1. Introduction

The story of the study of Dynamical Systems has a little bit of something for
everybody. As a �eld of study, it is both as old as Newton's invention of Calculus
and as current as a variety of brand new journals appearing now in the o�erings
of your local purveyor of mathematical literature. As an area of mathematical
exploration, it is as abstract as cohomology and as applied as computer experimen-
tation. Its tools range from traditional techniques of classical analysis to various
branches of topology born in the twentieth century at least partially in response
to some Dynamical Systems questions. It crosses interdisciplinary boundaries all
over the map, from ecology to psychology to meteorology, from chemical kinet-
ics to population genetics, from economics to mechanics Newtonian, Lagrangian,
and Hamiltonian. It ranges from elegant proof of abstract theorems to colorful
computer graphics plastered on T-shirts. Given such a broad and far-reaching
de�nition of the context, can any result be appropriately dubbed the Fundamen-
tal Theorem of Dynamical Systems? This paper presents a fundamental result
about some basic de�nitions of Dynamical Systems. This result is not new by
any means, but it may not be widely known outside the circle of practitioners of
the study of Dynamical Systems, and it may not be fully appreciated within that
circle.

2. Context

The consideration of a result as \fundamental" to the study of Dynamical
Systems seems premature without at least some discussion of what we mean by
\Dynamical Systems".
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A dynamical system consists of three ingredients: a setting in which the dy-
namical behavior takes place, such as the real line, a torus, or a locally compact
metric space; a mathematical rule or description which speci�es the evolution
of the system; and an initial condition or state from which the system starts.
The basic questions of Dynamical Systems are qualitative ones, dating back to
the introduction of geometrical and topological tools into the study of di�erential
equations by Poincar�e. For a particular initial state, what happens to the system
in the long run? How does \what happens" depend on the initial condition? How
does it depend on the form of the mathematical description of the evolution of the
system? On parameters within the description? On the properties of the space
on which the system is de�ned? That is a fairly simpli�ed description of what
Dynamical Systems is all about, but it is pretty accurate. Given a particular
setup and a mathematical description of how things are going to proceed, what
happens?

The mathematical descriptions of how things are to proceed fall generally into
two categories: discrete and continuous. A discrete dynamical system may be
represented by a recursively de�ned sequence of numbers or points. The Fibonacci
sequence and cellular automata are examples in which the recursive de�nition
involves more than evaluating a single-variable function. Iterating a function is
the standard discrete dynamical system, in which the function is applied to each
term of the sequence to give the next term.

The other broad category of dynamical systems, continuous ones, is perhaps
best represented by di�erential equations, certainly in light of the historical de-
velopment. Associated closely with di�erential equations are 
ows, whose very
name suggests the continuous nature of their de�nition. The dynamical systems
in these two broad categories are linked by similar dynamic behaviors and math-
ematical analyses. This had led to earlier and earlier introduction of Dynamical
Systems topics into the curriculum, in which students can discover much of the
interesting dynamical behavior exhibited by more mathematically sophisticated
systems without the prerequisites of di�erential topology, algebraic topology, or
di�erential geometry. As we present some de�nitions and the theorem, we shall
keep this continuous-discrete dichotomy in mind.

3. The theorem

Charles Conley presents in his CBMS monograph Isolated Invariants Sets and

the Morse Index [6] some signi�cant results about invariant sets, attractor-repeller
pairs, chain recurrence, Morse decompositions, and index theory (now called Con-
ley Index Theory) in the setting of 
ows on compact metric spaces. One of the
principal ideas in this work and a fundamental result in the study of Dynamical
Systems is the Conley Decomposition Theorem. That result can be stated very
simply:

Theorem 1. Any 
ow on a compact metric space decomposes into a chain re-

current part and a gradient-like part.
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On the other side of that discrete-continuous Dynamical Systems dichotomy,
the result reads as follows:

Theorem 2. The iteration of a continuous function on a compact metric space

decomposes the space into a chain recurrent part and a gradient-like part.

A point exhibits some sort of recurrent behavior when the dynamical system
returns the point to itself, or to a neighborhood of itself, in a particular way.
Chain recurrence is one type of recurrence with \errors" allowed along the orbit.
The term gradient-like suggests a one-way behavior, a 
owing downhill, mathe-
matically quanti�able. In either setting, the theorem is clearly \fundamental" in
the sense of being basic, elemental, even easy to understand. We need speci�c
de�nitions of various terms, such as chain recurrent, gradient-like, and Lyapunov
function, but the idea is simple, simply the following. A particular type of recur-
rent behavior which is worth consideration on its own merits as a descriptive tool
actually allows us to break down the very essence of the dynamic nature of a dy-
namical system into two parts: points which exhibit that carefully chosen type of
recurrent behavior, and points which instead travel strictly one-way in a fashion
that can be nicely quanti�ed by an appropriate mathematical description.

Although Conley's results are in the setting of 
ows, we acknowledge that the
iteration of continuous functions on compact metric spaces is the increasingly
more common setting for the introduction of Dynamical Systems to the novice,
and we restrict our attention to that setting in the discussion to follow.

4. Some dynamical preliminaries

Except for changing some variables, the following de�nitions and corresponding
notations are from [11]. Throughout the remainder of this exposition, X will
represent a compact metric space, with f : X ! X representing a continuous
function whose iteration provides the dynamics on X .

The forward orbit of x0 is the set of all forward iterates of x0. The point
x0 is a �xed point for f if f(x0) = x0. The point x0 is a periodic point for
f if fn(x0) = x0 for some n > 0, and its forward orbit is called a periodic

forward orbit. If xn = x0 but xk 6= x0 for 0 < k < n, then n is called the
period of the forward orbit. Finally, an orbit is a bi-in�nite sequence of points
(: : : ; x�2; x�1; x0; x1; : : : ) such that f(xn) = xn+1 for every integer n.

Fixed points are certainly the simplest examples of recurrent dynamical be-
havior: under iteration, a �xed point not only comes back, it never goes away.
When looking at subsets of the space rather than one point at a time, the relevant
concept is that of an invariant set. A subset Y � X is called an invariant set

if f(Y ) = Y . This de�nition does not suggest that any individual points remain
�xed; they may all do quite a bit of traveling under the iteration of the function,
but their orbits remain within the subset in question. Also, no points are left out,
in the sense that an invariant set di�ers from a positively invariant set, which
satis�es f(Y ) � Y , in which the inclusion may be as a proper subset. Notice
an important distinction between 
ows and iterating functions. Since a 
ow is
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de�ned for all R, negative time is built in from the start, so reversing the di-
rection of the 
ow and talking about the \backwards 
ow" is natural. On the
other hand, without some extra hypotheses on the function to be iterated (invert-
ible, homeomorphism, di�eomorphism, etc.), reversing the iteration, or inverting
the function, may be multi-valued or unde�ned. Many treatments of these ideas
include those extra hypotheses because of the natural parallels with the case of

ows. For some results with continuity the only assumption on f , see [14], [15].

One basic question in the study of dynamical systems is that of the ultimate
fate of points, and one representation of that idea is the \omega limit set". Just
as ! is at the end of the Greek alphabet, the omega limit set of a point or a set
is where it ends up under the action of the dynamical system. For a subset Y of
the space X , !(Y ) is de�ned to be the maximal invariant set in the closure of the
destination of the set Y under the dynamics of the system.

De�nition. For Y � X , let !n(Y ) �
S
k�n f

k(Y ) and !(Y ) �
T
n�0 !n(Y ).

Then !(Y ) is called the omega limit set of Y .

Since X is compact, if Y is nonempty, then !(Y ) is a nonempty compact set.
Consider the dynamical systems represented by the following diagrams, in

which dots represent �xed points and arrows indicate the direction of the orbit of
a point under iteration.

Example 1.

(a) (b)
Figure 1

The phase portraits in (a) and (b) can be considered representations of the iter-
ation of functions on the circle:

(a) f(�) = � + � cos2 �; (b) f(�) = � + � cos �;

where � < 1=2. In both cases, � = ��=2 are �xed points, and each �xed point
is its own omega limit set. Also in both cases, the omega limit set of any point
in the right open half-circle is the �xed point � = �=2, so the union of the omega
limit sets of all points in the right closed half-circle is the two point set � = ��=2.
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However, the omega limit set of the right closed half-circle is the entire right closed
half-circle. That is,

[

�2Y

!(�) 6= !(Y ):

This is but one illustration of the utility of the de�nition of omega limit set for
sets; the right closed half-circle is an invariant set in this example which is not
re
ected by a point-by-point omega limit set de�nition.

Omega limit sets will play an important role in the characterization of dynamics
provided by the Fundamental Theorem.

5. Tools for the theorem

As motivation for the type of recurrence used in the theorem, consider this
selection from the preface to [6]:

The time evolution of some processes, such as the movement of the
planets, is very accurately modeled by di�erential equations. Such
accurate modeling requires the identi�cation of a small number of
measurable quantities, like the positions and velocities of the planets,
whose behavior over the time span considered is almost independent
of the neglected factors. There are other important processes, such as
the 
uctuation of animal populations, for which the identi�cation of
such quantities is not possible but where a rough relation between the
more obvious variables and their \rates of change" may be evident : : : .
If such rough questions are to be of use it is necessary to study them
in rough terms, and that is the aim of these notes.

Chain recurrence is an incorporation of \roughness" or imprecision throughout
the dynamic process, consideration of points which are periodic up to a slightly
inexact following of the dynamics.

The modi�cation of the idea of the orbit of a point which leads to just type of
recurrence we need is called a pseudo-orbit. A pseudo-orbit is roughly an orbit
with \errors" or deviations from the true orbits allowed at certain intervals of
the dynamic process. For the iteration of a function, this deviation is possible at
each stage of the iteration. For 
ows, the errors must be allowed only at intervals
of time bounded away from zero; otherwise, the errors could accumulate in �nite
time to give behavior nothing at all like the original 
ow. The history of this
approach is as simple as ABC, as in Anosov, Bowen, and Conley. The ideas
were �rst developed by Conley in [5] and [6] and by Bowen in [3] and [4], based
on related ideas of Anosov in [1]. We continue to restrict our attention to the
iterating function case.

Measuring deviations from true orbits makes working in a metric space a nat-
ural choice. The de�nitions that follow, and even the main results ahead, can
be stated in the language of topologies and open sets, avoiding explicit use of
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the metric; however, in this introduction to the topic, we stay with the metric,
with computation and visualization our motivating concerns. Throughout the
discussion that follows, let (X; d) denote a compact metric space.

De�nition. Given x; y 2 X and " > 0, an "-pseudo-orbit from x to y means
a sequence of points (x = x0; x1; : : : ; xn = y) with n > 0 such that for k =
0; 1; : : : ; n� 1, we have d(f(xk); xk+1) < ".

Another way to describe a pseudo-orbit is as a sequence of points that would
be considered an orbit if the positions of the points were only known up to a given
�nite accuracy ". See Figure 2 below for a simple representation of an "-pseudo-
orbit from x0 to x4.

x0

x1

f(x0)

f(x1)

x2 x3

f(x2)

f(x3)

x4

Figure 2

Some authors, including Conley in his development of some of these ideas, use
the term \"-chain" for "-pseudo-orbit. Since we think of "-pseudo-orbits as derived
from orbits, we will use the pseudo-orbit terminology, although the word \chain"
will be used extensively as a modi�er for terms describing related structures and
behaviors.

The idea of "-pseudo-orbits can be used to describe a partial order on the set X .

Notation. For x and y in X , we will write x > y to mean that for every " > 0,
there is an "-pseudo-orbit from x to y; that is, for every " > 0 there is an n > 0
and there are values for xk so that (x0; x1; : : : ; xn) is an "-pseudo-orbit from x
to y.

Notice that x > y is a statement for all " > 0. If for an arbitrary choice of "
there is an "-pseudo-orbit from x to y, then the relation x > y holds. So x > y
is a rather strong relation between x and y. They are \almost" connected by an
orbit, because the deviations from a true orbit can be chosen as small as desired.
There remains a di�erence, however, between \x > y" and \y can be reached by
an orbit from x". For example, consider Example 1 in the previous section. On
the (b) side, there is no orbit from � = ��=2 to � = +�=2 because � = ��=2 is
a �xed point of the map. No matter how small an "-jump to some point a near
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� = ��=2 is taken, the true forward orbit of a will end up within another "-jump
of � = +�=2, so we have ��=2 > +�=2 (in this partial order sense).

To describe recurrence in this context, we invoke the alternative terminology
of chains and call the behavior chain recurrence. A point x 2 X is called chain

recurrent if x > x. That is, x is chain recurrent if there is an "-pseudo-orbit from
x back to itself for any choice of " > 0.

Figure 3 below is a simple representation of an "-pseudo-orbit from x0 back to
itself.

x4

f(x3)

x3

f(x2)

x2

f(x1)

x1

f(x0)

x0

f(x4)

Figure 3

This does not mean that x0 is necessarily chain recurrent; there is an "-pseudo-
orbit from x0 back to itself for a particular �xed " > 0, but there may not be
one for other choices of " > 0. Chain recurrence is a weaker form of recurrence
than periodicity, but it is not so weak that just �nding one "-pseudo-orbit for one
choice of " will do the trick.

Notation. R(X; f) � the chain recurrent set of f on X � fx 2 X : x is chain
recurrentg.

When the context allows no ambiguity, both R(X) and R(f) are used as alter-
native notations for the chain recurrent set.

Since any true orbit is an "-pseudo-orbit for any ", any periodic point is chain
recurrent. So Per(f) � R(f), where Per(f) � fx 2 X : x is periodicg.

Consider again Example 1 above. In part (a), � = ��=2 are �xed points. On
the right half-circle, points move up toward the �xed point � = �=2, and on the
left half-circle, points move down toward the �xed point � = ��=2. Then any
point in the circle is chain recurrent: for any " > 0, one can follow the orbit
of a point to a distance less than " from a �xed point, utilize an "-jump to get
past the �xed point, follow the orbit again, jump past the other �xed point, and
continue to return to the starting value. So the chain recurrent set is the entire
circle. In particular, R(f) 6= Per(f).
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In part (b) of the example, � = ��=2 are again �xed points. On the right
half-circle, points move up toward the �xed point � = �=2. This time, on the left
half-circle, points also move up toward the �xed point � = �=2. Then only the
�xed points are chain recurrent: for any other � there is no "-pseudo-orbit from
� back to itself for small enough ". So in this case, R(f) = Per(f).

Consider brie
y the structure of the chain recurrent set. The partial order
x > y generates an equivalence relation by de�ning x � y to mean that x > y
and y < x. The relation \�" partitions R(f) into equivalence classes, or chain

classes. Each chain class is chain transitive: within each chain class, any two
points have an "-pseudo-orbit connecting them, for any " > 0. Chain classes are
by de�nition the maximal chain transitive sets in the sense that no chain class
lies within a chain transitive set that is strictly larger than itself.

We note brie
y a few properties of the chain recurrent set. It is closed. It is
invariant. It contains all the periodic points, !(x) for each x 2 X , and points
exhibiting some other forms of recurrence which we have not discussed here, such
as the nonwandering set. (See [6].) Finally, the chain recurrent set satis�es a pair
of properties which can be shown to be lacking in some other types of recurrent
set. Any invariant set Y satis�es R(R(Y )) = R(Y ). Also, R(!(x)) = !(x) for
any x 2 Y . For proofs of these and other properties of the chain recurrent set, in
these and other settings, see, for example, [2], [6], [10], [14], [15].

The idea of a gradient-like dynamical system is an extension from gradient 
ows
of the idea of functions that decrease on solutions, called Lyapunov functions.
A dynamical system is called gradient-like if there is some continuous real-valued
function which is strictly decreasing on nonconstant solutions. A system is called
strongly gradient-like \if the chain recurrent set is totally disconnected (and con-
sequently equal to the rest point set)" [6]. A system is called chain recurrent \if
the chain recurrent set is the whole space" [6]. Note that strongly gradient-like
and chain recurrent are the extremes, with strongly gradient-like a stronger state-
ment than gradient-like. In particular, a dynamical system can be gradient-like
but also chain recurrent; for an example, see [6]. The connection between the
gradient terminology and chain recurrence is the Fundamental Theorem: chain
recurrence is the type of recurrence that, when factored out of the dynamics,
leaves the remainder of the space 
owing downhill with respect to a Lyapunov
function.

6. Back to the theorem

Now we have the tools to understand the theorem.

Theorem 2 (reprise). The iteration of a continuous function on a compact

metric space decomposes the space into a chain recurrent part and a gradient-like

part.

We present here just a 
avor of the proof by way of a couple of details: the
structure of the chain recurrent set in terms of attractors, and a glance at the
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complete Lyapunov function which provides the gradient-like structure for the
theorem.

A study of the qualitative behavior of a dynamical system inevitably involves
the discussion of sets called attractors. An attractor is a set A � X which
attracts neighboring points, in some well-de�ned way, under the action of a 
ow
or an iterated function f . De�nitions abound; see, for example, [10], [12], [16],
and references listed therein.

We will utilize the de�nition given by Conley ([5], [6]) for 
ows on compact met-
ric spaces, and modi�ed and used by McGehee [11] for the setting of continuous
functions on compact metric spaces.

De�nition. A set A is an attractor for an iterated function f if

(1) A is a nonempty compact invariant set and
(2) there exists a neighborhood U of A such that !(U) = A.

The domain of attraction of an attractor A is the set of all points attracted to A:

D(A) � fx 2 X : !(x) � Ag:

The domain of attraction is sometimes called the basin of attraction. The set
of all points in X outside the in
uence of the attractor A is called the repeller

complementary to A and is represented by the following notation:

A� � X �D(A):

That is, A� � fx 2 X : !(x) 6� Ag. (It is true that for any attractor A and any
x 2 X , either !(x) � A or !(x) \ A = ?.) In the case of 
ows, the dual repeller
A� is an attractor for the reverse 
ow, and much is made of the symmetry in
the dynamical structure of attractor-repeller pairs. While the symmetry does not
carry over to the iterating function setting, attractor-repeller pairs nonetheless
provide a useful breakdown of X into three sets: points in the attractor A (and
which stay there since an attractor is an invariant set), points not in A but which
end up there in the sense of !-limit set, and point not in A which do not approach
A under iteration. For more on attractors in this context, see [6], [11], [14], [15].

We skip right to the punch line.

Theorem 3. For a continuous iterated function on a compact metric space X ,

there are only countably many attractors A and complementary repellers A�, and
the chain recurrent set is the countable intersection of the pairwise unions of those

attractor-repeller pairs:

R(X) =
\
fA [ A� : A is an attractor on Xg.

For proofs in various settings, see [6], [9], [10], [15]. Although the collection of
attractors is not the same as the breakdown of the chain recurrent set into chain
transitive components, the attractors and their complementary repellers provide
both the structure to the chain transitive components and the pieces from which
to construct a complete Lyapunov function for the space.
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De�nition. A complete Lyapunov function for the spaceX with respect to a con-
tinuous function f is a continuous, real-valued function g on X satisfying:

(a) g is strictly decreasing on orbits outside the chain recurrent set;
(b) g(R(X)) is a compact nowhere dense subset of R;
(c) if x; y 2 R(X), then g(x) = g(y) if and only if x � y; that is, for any

c 2 (R(X)), g�1(c) is a chain transitive component of R(X).

On both sides of the 
ow/iterating function fence, the construction of the complete
Lyapunov function for X is accomplished piecewise from the attractor-repeller
pairs. Here is just a quick taste, in our setting of the iteration of a continuous
function on a compact metric space, taken directly from [14]. Other constructions
are similar.

Lemma. For each attractor An, there is a continuous function gn such that

g�1n (0) = An, g
�1
n (1) = A�n, and gn is strictly decreasing on orbits of points in

X � (An [ A
�
n).

Each function gn is obtained from sums of suprema of the function

g0(x) =
d(x;An)

d(x;An) + d(x;A�n)

applied to iterates of the function f , using the attractor-repeller pair (An; A
�
n).

Theorem 4. If f is a continuous function on a compact metric space X , then

there is a complete Lyapunov function g : X ! R for f .

The Lyapunov function in this case can take the form

1X

n=1

2gn(x)

3n
;

where the g's are from the Lemma, on the attractor-repeller pairs, one pair at
a time.

The partial order \>" on the points of the space X generates a partial order
on the chain classes of X which is then re
ected by the complete Lyapunov func-
tion on X . In general, there are many orderings of the components of R(X) by
di�erent complete Lyapunov functions, all of which respect the order imposed by
the dynamics.

There are modi�cations and extensions of the Fundamental Theorem in many
settings: for example, semi
ows, homeomorphisms, di�eomorphisms, relations, on
spaces compact, locally compact, noncompact, in�nite dimensional, etc. A few
references are: [7], [10], [11], [13]{[15].
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7. The Fundamental Theorem

Now that we have both a statement and an understanding of the theorem, the
question remains: why should this be considered the Fundamental Theorem of
Dynamical Systems?

In some sense, all the questions of Dynamical Systems are either variations on
or extensions of the following: what is the ultimate fate or dynamical behavior
of each point in the system, and how do those behaviors �t together to give
a description of the ultimate fate or behavior of the system as a whole? The
Conley Decomposition Theorem is a concise description of all possible types of
motion from a very basic point of view, a simple statement of \what happens":
points are recurrent, or they run downhill on solutions. It is a one-sentence
statement, in a nutshell, of all that can happen: parts of the space are either
chain recurrent or gradient-like. It is more than a vacuous statement of the Law
of the Excluded Middle: \points either exhibit this type of recurrence or they
do not". Instead, it gives real alternatives of some mathematically quanti�able
behavior. The theorem is fundamental in the sense that it deals with the basic
question of the �eld. It is also fundamental in that it encompasses such big ideas
in such a small, concise statement.

Consider brie
y some other uses of the phrase \Fundamental Theorem". The
Fundamental Theorem of Arithmetic states that every counting number can be
expressed uniquely as a product of primes. That is, the elemental building block
of Arithmetic, the counting number, can be decomposed uniquely into its basic
parts: its prime factors. The Fundamental Theorem of Algebra states that every
polynomial with real or complex coe�cients can be factored into linear factors in
the �eld of complex numbers. That is, the elemental building block of Algebra,
the polynomial, can be decomposed uniquely into its basic parts: its linear fac-
tors. One description of the Conley Decomposition Theorem is that the elemental
piece of a Dynamical System, the space on which the dynamics take place, can
be decomposed uniquely into its basic dynamical parts: points whose dynamics
can be described as exhibiting a particular type of recurrence, and points which
proceed in a gradient-like fashion and provide the dynamical structure for �tting
the recurrent parts together.

The Fundamental Theorem of Calculus is not a result about breaking down into
parts but about bringing together the perhaps unexpectedly related derivative
and integral. It connects the branches of the �eld in a fundamental way. In
a somewhat similar way, the Conley Decomposition Theorem is about not only
the behavior of a system but the study of the discipline:

It has always seemed to me that this is the correct framework, at
the coarsest level, for studying dynamical systems. One can present
purely gradient-like systems such as Morse-Smale 
ows, then study
chain recurrent phenomena like Anosov di�eomorphisms or the Smale
horseshoe, and �nally investigate the way these two ingredients �t
together to form more general systems. [8]
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This brief exposition does not claim more than it states clearly. It makes no
claims about a Fundamental Personage in the History of Dynamical Systems or
a Fundamental Paper in Dynamical Systems; the name of Poincar�e and a cer-
tain paper by Smale, among others, come to mind. This paper is instead about
a theorem, one which deals with Poincar�e's basic question about the qualitative
behavior of a dynamical system, which deals with Smale's classi�cation of Dy-
namical Systems by qualitative dynamical behavior, and which opens the door to
some more results about structural stability and other topics, all of which are at
the heart of Dynamical Systems. This paper presents to you the Fundamental
Theorem of Dynamical Systems.
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I can hardly believe it has been a decade since he left us. When he did leave us,
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