Home | Contents | Submissions, editors, etc. | Login | Search | EJP
 Electronic Communications in Probability > Vol. 11 (2006) > Paper 12 open journal systems 


Recurrence and transience of excited random walks on $Z^d$ and strips

Martin P.W. Zerner, University of Tuebingen


Abstract
We investigate excited random walks on $Z^d, dge 1,$ and on planar strips $Ztimes{0,1,ldots,L-1}$ which have a drift in a given direction. The strength of the drift may depend on a random i.i.d. environment and on the local time of the walk. We give exact criteria for recurrence and transience, thus generalizing results by Benjamini and Wilson for once-excited random walk on $Z^d$ and by the author for multi-excited random walk on $Z$.


Full text: PDF | PostScript

Pages: 118-128

Published on: July 7, 2006


Bibliography
  1. G. Amir, I. Benjamini and G. Kozma. Excited random walk against a wall. Preprint available at http://arxiv.org/abs/math.PR/0509464 (2005). Math. Review number not available.
  2. T. Antal and S. Redner. The excited random walk in one dimension. J. Phys. A: Math. Gen. 38 (2005), 2555--2577. Math. Review 2005k:82026
  3. I. Benjamini and D.B. Wilson. Excited random walk. Elect. Comm. Probab. 8 (2003), 86--92. Math. Review 2004b:60120
  4. G. Kozma. Excited random walk in three dimensions has positive speed. Preprint available at http://arxiv.org/abs/math.PR/0310305 (2003). Math. Review number not available.
  5. G. Kozma. Excited random walk in two dimensions has linear speed. Preprint available at http://arxiv.org/abs/math.PR/0512535 (2005). Math. Review number not available.
  6. S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. (1993) Springer. Math. Review 95j:60103
  7. A.G. Pakes. On the critical Galton-Watson process with immigration. J. Austral. Math. Soc. 12 (1971), 476--482. Math. Review 0307370
  8. T. Sellke. Reinforced random walk on the d-dimensional integer lattice. Technical report #94-26, Dept. of Statistics, Purdue University. (1994) Math. Review number not available.
  9. A.-S. Sznitman and M.P.W. Zerner. A law of large numbers for random walks in random environment. Ann. Probab. 27, No. 4 (1999), 1851--1869. Math. Review 2001f:60116
  10. M.P.W. Zerner. Multi-excited random walks on integers. Probab. Theory Related Fields 133 (2005), 98--122. Math. Review 2197139
  11. M.P.W. Zerner and F. Merkl. A zero-one law for planar random walks in random environment. Ann. Probab. 29 (2001), 1716--1732. Math. Review 2003a:60144
  12. A. Zubkov. The life spans of a branching process with immigration. Theory Prob. Appl. 17 (1972), 174--183. Math. Review 0300351
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | EJP

Electronic Communications in Probability. ISSN: 1083-589X