Home | Contents | Submissions, editors, etc. | Login | Search | EJP
 Electronic Communications in Probability > Vol. 11 (2006) > Paper 30 open journal systems 


Some properties of exponential integrals of Levy processes and examples

Hitoshi Kondo, Department of Mathematics, Keio University
Makoto Maejima, Department of Mathematics, Keio University
Ken-iti Sato,


Abstract
The improper stochastic integral $Z=int_0^{infty-}exp(-X_{s-})dY_s$ is studied, where ${ (X_t ,Y_t) , t ges 0 }$ is a L'evy process on $R ^{1+d}$ with ${X_t }$ and ${Y_t }$ being $R$-valued and $R ^d$-valued, respectively. The condition for existence and finiteness of $Z$ is given and then the law $law(Z)$ of $Z$ is considered. Some sufficient conditions for $law(Z)$ to be selfdecomposable and some sufficient conditions for $law(Z)$ to be non-selfdecomposable but semi-selfdecomposable are given. Attention is paid to the case where $d=1$, ${X_t}$ is a Poisson process, and ${X_t}$ and ${Y_t}$ are independent. An example of $Z$ of type $G$ with selfdecomposable mixing distribution is given


Full text: PDF | PostScript

Pages: 291-303

Published on: December 4, 2006


Bibliography
  1. T. Aoyama, M. Maejima and J. Rosinski. A subclass of type G selfdecomposable distributions. Preprint, 2006. Math. Review number not available.
  2. J. Bertoin, A. Lindner and R. Maller. On continuity properties of the law of integrals of Levy processes. Seminaire de Probabilites, 2006, to appear. Math. Review number not available.
  3. Ph. Carmona, F. Petit and M. Yor. On the distribution and asymptotic results for exponential functionals of Levy processes. In Exponential Functionals and Principal Values Related to Brownian Motion (ed. M. Yor), 1997, Biblioteca de la Revista Matematica Iberoamericana, pp. 73-126. Math. Review 1648657
  4. Ph. Carmona, F. Petit and M. Yor. Exponential functionals of Levy processes.@ In Levy Processes: Theory and Applications, eds. O.E. Barndorff-Nielsen, T. Mikosh and S.I. Resnick, Birkhauser, 2001, pp. 41-55. Math. Review 90h:60065
  5. R. Doney and R.A. Maller. Stability and attraction to normality for L'evy processes at zero and at infinity. J. Theoret. Prob. 15 (2002), 751-792. Math. Review 1922446
  6. D. Dufresne. The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuarial J. 1990, 39-79. Math. Review 1129194
  7. K.B. Erickson and R.A. Maller. Generalised Ornstein-Uhlenbeck processes and the convergence of Levy integrals. Lecture Notes in Math., Springer, 1857 (2005), 70-94. Math. Review 2126967
  8. C. Halgreen. Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions. Z. Wahrsch. Verw. Gebiete 47 (1979), 13-17. Math. Review 0521527
  9. C. Kluppelberg, A. Lindner and R. Maller. Continuous time volatility modelling: COGARCH versus Ornstein-Uhlenbeck models. In The Shiryaev Festschrift: From Stochastic Calculus to Mathematical Finance, eds. Yu. Kabanov, R. Liptser and J. Stoyanov, Springer, Berlin, (2006), pp. 393-419, Math. Review 2234284
  10. A. Lindner and R. Maller. L'evy integrals and the stationarity of generalised Ornstein-Uhlenbeck processes. Stoch. Proc. Appl. 115 (2005), 1701-1722. Math. Review 2165340
  11. M. Maejima and Y. Naito. Semi-selfdecomposable distributions and a new class of limit theorems. Probab. Theory Relat. Fields {bf 112 (1998), 12-31. Math. Review 1646440
  12. M. Maejima and Y. Niiyama. The generalized Langevin equation and an example of type $G$ distributions. ISM Cooperate Research Report 175 (2005), 126-129. Math. Review number not available.
  13. M. Maejima and J. Rosinski (2002) : Type $G$ distributions on R^d. J. Theoret. Prob. 15 (2002), 323-341. Math. Review 1898812
  14. G. Samorodnitsky and M.S. Taqqu. Stable Non-Gaussian Random Processes. Chapman & Hall, (1994), New York. Math. Review 1280932
  15. K. Sato. Absolute continuity of multivariate distributions of class L. J. Multivar. Anal. 12(1982), 89-94. Math. Review 0650931
  16. K. Sato. Levy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge (1999). Math. Review 1280932
  17. K. Sato (2001) : Basic results on Levy processes. In Levy Processes: Theory and Applications, eds. O.E. Barndorff-Nielsen, T. Mikosch and S.I. Resnick, Birkhauser, Boston (2001), pp. 3-37. Math. Review 1833690
  18. K. Sato. Subordination and self-decomposability. Statist. Probab. Lett. 54 (2001), 317-324. Math. Review 1857946
  19. K. Sato. Monotonicity and non-monotonicity of domains of stochastic integral operators. Probab. Math. Statist. 26 (2006), 23-39. Math. Review number not available.
  20. S.J. Wolfe. Continuity properties of decomposable probability measures on Euclidian spaces. J. Multivar. Anal. 13 (1983), 534-538. Math. Review 0727038
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | EJP

Electronic Communications in Probability. ISSN: 1083-589X