Research Article

Starlike and Convex Properties for Hypergeometric Functions

Oh Sang Kwon\(^1\) and Nak Eun Cho\(^2\)

\(^1\) Department of Mathematics, Kyungsung University, Busan 608-736, South Korea
\(^2\) Department of Applied Mathematics, Pukyong National University, Busan 608-737, South Korea

Correspondence should be addressed to Nak Eun Cho, necho@pknu.ac.kr

Received 13 February 2008; Accepted 18 June 2008

Recommended by Linda Sons

The purpose of the present paper is to give some characterizations for a (Gaussian) hypergeometric function to be in various subclasses of starlike and convex functions. We also consider an integral operator related to the hypergeometric function.

Copyright © 2008 O. S. Kwon and N. E. Cho. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let \(\mathcal{T} \) be the class consisting of functions of the form

\[
f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad a_n \geq 0,
\]

that are analytic and univalent in the open unit disk \(U = \{ z : |z| < 1 \} \). Let \(\mathcal{T}^*(\alpha) \) and \(\mathcal{C}(\alpha) \) denote the subclasses of \(\mathcal{T} \) consisting of starlike and convex functions of order \(\alpha \) \((0 \leq \alpha < 1)\), respectively [1].

Recently, Bharati et al. [2] introduced the following subclasses of starlike and convex functions.

Definition 1.1. A function \(f \) of the form (1.1) is in \(S_p T(\alpha, \beta) \) if it satisfies the condition

\[
\text{Re}\left\{ \frac{zf'(z)}{f(z)} \right\} \geq a \left| \frac{zf'(z)}{f(z)} - 1 \right| + \beta, \quad a \geq 0, \quad 0 \leq \beta < 1,
\]

and \(f \in \mathcal{UC}(\alpha, \beta) \) if and only if \(zf' \in S_p \mathcal{T}(a, \beta) \).
Definition 1.2. A function f of the form (1.1) is in $P\mathcal{T}(a)$ if it satisfies the condition

$$\text{Re}\left\{ \frac{zf'(z)}{f(z)} \right\} + \alpha \geq \left| \frac{zf'(z)}{f(z)} - a \right|, \quad 0 < a < \infty,$$

(1.3)

and $f \in C\mathcal{P}\mathcal{T}(a)$ if and only if $zf' \in \mathcal{P}\mathcal{T}(a)$.

Bharati et al. [2] showed that

$S_p\mathcal{T}(a, \beta) = \mathcal{T}^*((a+\beta)/(1+a))$, $\mathcal{UCT}(a, \beta) = C((a+\beta)/(1+a))$, $\mathcal{P\mathcal{T}}(a) = \mathcal{T}^*(1-a)$ $(0 < a \leq 1)$, and $C\mathcal{P}\mathcal{T}(a) = C(1-a)$ $(0 < a \leq 1)$. In particular, we note that $\mathcal{UCT}(1,0)$ is the class of uniformly convex functions given by Goodman [3] (also see [4–6]).

Let $F(a, b; c; z)$ be the (Gaussian) hypergeometric function defined by

$$F(a, b; c; z) = \sum_{n=0}^{\infty} \left(\begin{array}{c} a \beta \cdots \beta \\ c \end{array} \right)_n \frac{a_n}{(1)_n} z^n,$$

(1.4)

where $c \neq 0, -1, -2, \ldots$, and $(\lambda)_n$ is the Pochhammer symbol defined by

$$(\lambda)_n = \begin{cases} 1 & \text{if } n = 0, \\ (1 + \lambda) \cdots (\lambda + n - 1) & \text{if } n \in \mathbb{N} = \{1, 2, \ldots\}. \end{cases}$$

(1.5)

We note that $F(a, b; c; 1)$ converges for $\text{Re}(c - a - b) > 0$ and is related to the Gamma function by

$$F(a, b; c; 1) = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}.$$

(1.6)

Silverman [7] gave necessary and sufficient conditions for $zF(a, b; c; z)$ to be in $\mathcal{T}^*(a)$ and $C(a)$, and also examined a linear operator acting on hypergeometric functions. For the other interesting developments for $zF(a, b; c; z)$ in connection with various subclasses of univalent functions, the readers can refer to the works of Carlson and Shaffer [8], Merkes and Scott [9], and Ruscheweyh and Singh [10].

In the present paper, we determine necessary and sufficient conditions for $zF(a, b; c; z)$ to be in $S_p\mathcal{T}(a, \beta)$, $\mathcal{UCT}(a, \beta)$, $\mathcal{P}\mathcal{T}(a)$, and $C\mathcal{P}\mathcal{T}(a)$. Furthermore, we consider an integral operator related to the hypergeometric function.

2. Results

To establish our main results, we need the following lemmas due to Bharati et al. [2].

Lemma 2.1. (i) A function f of the form (1.1) is in $S_p\mathcal{T}(a, \beta)$ if and only if it satisfies

$$\sum_{n=2}^{\infty} (n(1+a)-(a+\beta))a_n \leq 1-\beta.$$

(2.1)

(ii) A function f of the form (1.1) is in $\mathcal{UCT}(a, \beta)$ if and only if it satisfies

$$\sum_{n=2}^{\infty} n(n+1-(a+\beta))a_n \leq 1-\beta.$$

(2.2)
Lemma 2.2. (i) A function \(f \) of the form (1.1) is in \(\mathcal{PT}(a) \) if and only if it satisfies

\[
\sum_{n=2}^{\infty} (n-1+a)a_n \leq a.
\] (2.3)

(ii) A function \(f \) of the form (1.1) is in \(\mathcal{CPPT}(a) \) if and only if it satisfies

\[
\sum_{n=2}^{\infty} n(n-1+a)a_n \leq a.
\] (2.4)

Theorem 2.3. (i) If \(a, b > -1, \ c > 0, \) and \(ab < 0, \) then \(zF(a, b; c; z) \) is in \(\mathcal{SPPT}(\alpha, \beta) \) if and only if

\[
c \geq a + b + 1 - \frac{(1+a)ab}{1-\beta}.
\] (2.5)

(ii) If \(a, b > 0 \) and \(c > a + b + 1, \) then \(F_1(a, b; c; z) = z(2 - F(a, b; c; z)) \) is in \(\mathcal{SPPT}(\alpha, \beta) \) if and only if

\[
\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} \left(1 + \frac{(1+a)ab}{(1-\beta)(c-a-b-1)} \right) \leq 2.
\] (2.6)

Proof. (i) Since

\[
zF(a, b; c; z) = z + \frac{ab}{c} \sum_{n=2}^{\infty} \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} z^n = z - \left| \frac{ab}{c} \right| \sum_{n=2}^{\infty} \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} z^n,
\] (2.7)

according to (i) of Lemma 2.1, we must show that

\[
\sum_{n=2}^{\infty} \left(n(1+a) - (\alpha + \beta) \right) \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} \leq \left| \frac{c}{ab} \right| (1-\beta).
\] (2.8)

Noting that \((\lambda)_n = \lambda(\lambda + 1)_{n-1} \) and then applying (1.6), we have

\[
\sum_{n=0}^{\infty} \left((n+2)(1+a) - (\alpha + \beta) \right) \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} = (1+a) \sum_{n=0}^{\infty} \frac{(a+1)_n(b+1)_n}{(c+1)_n(1)_n} + (1-\beta) \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)_n(b)_n}{(c)_n(1)_n}
\]

\[
= (1+a) \frac{\Gamma(c+1) \Gamma(c-a-b-1)}{\Gamma(c-a) \Gamma(c-b)} + (1-\beta) \frac{c}{ab} \left(\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} - 1 \right).
\] (2.9)
Hence, (2.8) is equivalent to

$$\frac{\Gamma(c+1)\Gamma(c-a-b-1)}{\Gamma(c-a)\Gamma(c-b)} \left(1 + \alpha + (1 - \beta) \frac{c - a - b - 1}{ab}\right) \leq (1 - \beta) \left(\frac{c}{[ab]} + \frac{c}{ab}\right) = 0. \quad (2.10)$$

Thus, (2.10) is valid if and only if $1 + \alpha + (1 - \beta)(c - a - b - 1)/(ab) \leq 0$ or, equivalently, $c \geq a + b + 1 - (1 + a)ab/(1 - \beta)$.

(ii) Since

$$F_1(a, b; c, z) = z - \sum_{n=2}^{\infty} \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} z^n, \quad (2.11)$$

by (i) of Lemma 2.1, we need only to show that

$$\sum_{n=2}^{\infty} (n(1 + \alpha) - (\alpha + \beta)) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \leq 1 - \beta. \quad (2.12)$$

Now,

$$\sum_{n=2}^{\infty} (n(1 + \alpha) - (\alpha + \beta)) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} = (1 + \alpha) \sum_{n=1}^{\infty} \frac{n(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} (1 - \beta) \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}$$

$$= \frac{(1 + \alpha)ab}{c} \sum_{n=1}^{\infty} \frac{(a + 1)_{n-1}(b + 1)_{n-1}}{(c + 1)_{n-1}(1)_{n-1}} + (1 - \beta) \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}$$

$$= \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left(\frac{(1 + \alpha)ab}{c} + 1 - \beta\right) - (1 - \beta). \quad (2.13)$$

But this last expression is bounded above by $1 - \beta$ if and only if (2.6) holds.

\[\square \]

Theorem 2.4. (i) If $a, b > -1$, $ab < 0$, and $c > a + b + 2$, then $zF(a, b; c; z)$ is in $\mathcal{U}\mathcal{C}(\alpha, \beta)$ if and only if

$$(1 + \alpha)(a)_{2}(b)_{2} + (3 + 2\alpha - \beta)ab(c - a - b - 2) + (1 - \beta)(c - a - b - 2)_{2} \geq 0. \quad (2.14)$$

(ii) If $a, b > 0$ and $c > a + b + 2$, then $F_1(a, b; c, z) = z(2 - F(a, b; c; z))$ is in $\mathcal{U}\mathcal{C}(\alpha, \beta)$ if and only if

$$\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} \left(\frac{(1 + \alpha)(a)_{2}(b)_{2}}{(1 - \beta)(c - a - b - 2)_{2}} + \left(\frac{3 + 2\alpha - \beta}{1 - \beta}\right)\left(\frac{ab}{c - a - b - 1}\right) + 1\right) \leq 2. \quad (2.15)$$
Proof. (i) Since zF has the form (2.7), we see from (ii) of Lemma 2.1 that our conclusion is equivalent to

$$\sum_{n=2}^{\infty} n(n+\alpha) - (\alpha + \beta) \frac{(a+1)n(b+1)n}{(c+1)n(1)n+1} \leq \frac{c}{|ab|}(1-\beta). \quad (2.16)$$

Writing $(n+2)((n+2)(1+\alpha) - (\alpha + \beta)) = (1+\alpha)(n+1)^2 + (2+\alpha - \beta)(n+1) + (1-\beta)$, we see that

$$\sum_{n=0}^{\infty} (n+2)((n+2)(1+\alpha) - (\alpha + \beta)) \frac{(a+1)n(b+1)n}{(c+1)n(1)n+1}$$

$$= (1+\alpha) \sum_{n=0}^{\infty} (n+1) \frac{(a+1)n(b+1)n}{(c+1)n(1)n} + (2+\alpha - \beta) \sum_{n=0}^{\infty} \frac{c}{(c+1)n(1)n}$$

$$+ (1-\beta) \sum_{n=0}^{\infty} \frac{(a+1)n(b+1)n}{(c+1)n(1)n+1}$$

$$= \frac{(1+\alpha)(a+1)(b+1)}{c+1} \sum_{n=0}^{\infty} \frac{(a+2)n(b+2)n}{(c+2)n(1)n} + (3+2\alpha - \beta) \sum_{n=0}^{\infty} \frac{(a+1)n(b+1)n}{(c+1)n(1)n}$$

$$+ (1-\beta) \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)n(b)n}{(c)n(1)n}$$

$$= \frac{\Gamma(c+1)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} \left((1+\alpha)(a+1)(b+1) + (3+2\alpha - \beta)(c-a-b-2) \right) - \frac{(1-\beta)c}{ab}.$$

This last expression is bounded above by $(1-\beta)c/|ab|$ if and only if

$$(1+\alpha)(a+1)(b+1) + (3+2\alpha - \beta)(c-a-b-2) + \frac{1-\beta}{ab} (c-a-b-2) \leq 0, \quad (2.18)$$

which is equivalent to (2.14).

(ii) In view of (ii) of Lemma 2.1, we need only to show that

$$\sum_{n=2}^{\infty} n(n+\alpha) - (\alpha + \beta) \frac{(a)\beta n-1(b)\beta n-1}{(c)\beta n-1(1)\beta n-1} \leq 1-\beta. \quad (2.19)$$

Now,

$$\sum_{n=0}^{\infty} (n+2)((n+2)(1+\alpha) - (\alpha + \beta)) \frac{(a)\beta n+1(b)\beta n+1}{(c)\beta n+1(1)\beta n+1}$$

$$= (1+\alpha) \sum_{n=0}^{\infty} (n+2)^2 \frac{(a)\beta n+1(b)\beta n+1}{(c)\beta n+1(1)\beta n+1} - (\alpha + \beta) \sum_{n=0}^{\infty} (n+2) \frac{(a)\beta n+1(b)\beta n+1}{(c)\beta n+1(1)\beta n+1}. \quad (2.20)$$
Writing \(n + 2 = (n + 1) + 1 \), we have

\[
\sum_{n=0}^{\infty} (n+2)(a)_{n+1}(b)_{n+1} = \sum_{n=0}^{\infty} (a)_{n+1}(b)_{n+1} + \sum_{n=0}^{\infty} (a)_{n+1}(b)_{n+1},
\]

\[
\sum_{n=0}^{\infty} (n+2)2(a)_{n+1}(b)_{n+1} = \sum_{n=0}^{\infty} (n+1)(a)_{n+1}(b)_{n+1} + 2\sum_{n=0}^{\infty} (a)_{n+1}(b)_{n+1} + \sum_{n=0}^{\infty} (a)_{n+1}(b)_{n+1}
\]

\[
= \sum_{n=1}^{\infty} (a)_{n+1}(b)_{n+1} + 3\sum_{n=0}^{\infty} (a)_{n+1}(b)_{n+1} + \sum_{n=1}^{\infty} (a)_{n+1}(b)_{n+1}.
\]

(2.21)

Substituting (2.21) into the right-hand side of (2.20), we obtain

\[
(1 + \alpha)\sum_{n=0}^{\infty} \frac{(a)_{n+2}(b)_{2n+2}}{(c)_{n+2}} + (3 + 2\alpha - \beta)\sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}} + (1 - \beta)\sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}}.
\]

(2.22)

Since \((a)_{n+k} = (a)_k(a+k)_n\), we write (2.22) as

\[
(1 + \alpha)(a)_{2}(b)_2 \frac{\Gamma(c + 2)\Gamma(c - a - b - 2)}{\Gamma(c - a)\Gamma(c - b)} + (3 + 2\alpha - \beta) \frac{ab\Gamma(c + 1)\Gamma(c - a - b - 1)}{c\Gamma(c - a)\Gamma(c - b)}
\]

\[
+ (1 - \beta) \left(\frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} - 1 \right).
\]

(2.23)

By simplification, we see that the last expression is bounded above by \(1 - \beta\) if and only if (2.15) holds. \(\square\)

Theorem 2.5. (i) If \(a, b > -1, c > 0,\) and \(ab < 0,\) then \(z F(a, b; c; z)\) is in \(PT(a)\) if and only if

\[
c \geq a + b + 1 - \frac{ab}{a}.
\]

(2.24)

(ii) If \(a, b > 0\) and \(c > a + b + 1,\) then \(F_1(a, b; c; z) = z(2 - F(a, b; c; z))\) is in \(PT(a)\) if and only if

\[
\frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \left(1 + \frac{ab}{a(c - a - b - 1)} \right) \leq 2.
\]

(2.25)

Proof. (i) Since

\[
z F(a, b; c; z) = z + \frac{ab}{c} \sum_{n=2}^{\infty} \frac{(a + 1)_{n-2}(b + 1)_{n-2}}{(c + 1)_{n-2}(1)_{n-1}} z^n = \sum_{n=2}^{\infty} \frac{(a + 1)_{n-2}(b + 1)_{n-2}}{(c + 1)_{n-2}(1)_{n-1}} z^n,
\]

(2.26)

according to (i) of Lemma 2.2, we must show that

\[
\sum_{n=2}^{\infty} (n-1 + \alpha) \frac{(a + 1)_{n-2}(b + 1)_{n-2}}{(c + 1)_{n-2}(1)_{n-1}} \leq \frac{c}{|ab|} a.
\]

(2.27)
Noting that \((\lambda)_n = \lambda(\lambda + 1)_{n-1}\) and then applying (1.6), we have

\[
\sum_{n=0}^{\infty} (n + 1 + a) \frac{(a + 1)n(b + 1)n}{(c + 1)n(1)n+1} = \sum_{n=0}^{\infty} \frac{(a + 1)n(b + 1)n}{(c + 1)n(1)n} + \alpha \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)n(b)n}{(c)n(1)n}
\]

\[
= \frac{\Gamma(c + 1)\Gamma(c - a - b - 1)}{\Gamma(c - a)\Gamma(c - b)} + \alpha \frac{c}{ab} \left(\frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} - 1 \right).
\]

(2.28)

Hence, (2.27) is equivalent to

\[
\frac{\Gamma(c + 1)\Gamma(c - a - b - 1)}{\Gamma(c - a)\Gamma(c - b)} \left(1 + \alpha \frac{c - a - b - 1}{ab} \right) \leq \alpha \left(\frac{c}{|ab|} - \frac{c}{ab} \right) = 0.
\]

(2.29)

Thus, (2.29) is valid if and only if \(1 + \alpha(c - a - b - 1)/ab \leq 0\) or, equivalently, \(c \geq a + b + 1 - ab/\alpha\).

(ii) Since

\[
F_1(a, b; c; z) = z - \sum_{n=1}^{\infty} \frac{(a)(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} z^n,
\]

by (i) of Lemma 2.2, we need only to show that

\[
\sum_{n=2}^{\infty} (n - 1 + a) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \leq \alpha.
\]

(2.31)

Now,

\[
\sum_{n=2}^{\infty} (n - 1 + a) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} = \sum_{n=1}^{\infty} \frac{n(a)n(b)n}{(c)n(1)n} + \alpha \sum_{n=1}^{\infty} \frac{(a)n(b)n}{(c)n(1)n}
\]

\[
= \frac{ab}{c} \sum_{n=1}^{\infty} \frac{(a + 1)n-1(b + 1)n-1}{(c + 1)n-1(1)n-1} + \alpha \sum_{n=1}^{\infty} \frac{(a)n(b)n}{(c)n(1)n}
\]

\[
= \frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \left(\frac{ab}{c - a - b - 1} + \alpha \right) - \alpha.
\]

(2.32)

But this last expression is bounded above by \(\alpha\) if and only if (2.25) holds.

\[\square\]

Theorem 2.6. (i) If \(a, b > -1, \ ab < 0, \text{and} \ c > a + b + 2, \text{then} \ zF(a, b; c; z) \text{is in} \ C_\mathcal{D}_\mathcal{T}(\alpha) \text{if and only if}

\[
(a)_{2}^{2} + (2 + a)ab(c - a - b - 2) + a(c - a - b - 2)_{2} \geq 0.
\]

(2.33)

(ii) If \(a, b > 0 \text{and} \ c > a + b + 2, \text{then} \ F_1(a, b; c; z) = z(2 - F(a, b; c; z)) \text{is in} \ C_\mathcal{D}_\mathcal{T}(\alpha) \text{if and only if}

\[
\frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \left(\frac{(a)_{2}^{2}}{\alpha(c - a - b - 2)_{2}} + \left(\frac{2 + a}{\alpha} \right) \left(\frac{ab}{c - a - b - 1} \right) + 1 \right) \leq 2.
\]

(2.34)
Proof. (i) Since $z\bar{F}$ has the form (2.26), we see from (ii) of Lemma 2.2 that our conclusion is equivalent to

$$
\sum_{n=2}^{\infty} n(n-1+\alpha) \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}} \leq \frac{c}{|ab|} \alpha.
$$

(2.35)

Writing $(n+2)(n+1+\alpha) = (n+1)^2 + (1+\alpha)(n+1) + \alpha$, we see that

$$
\sum_{n=0}^{\infty} (n+2)(n+1+\alpha) \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n+1}}
$$

$$
= \sum_{n=0}^{\infty} (n+1) \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}} + (1+\alpha) \sum_{n=0}^{\infty} (a+1)_{n}(b+1)_{n} + a \sum_{n=0}^{\infty} (c+1)_{n}(1)_{n+1}
$$

$$
= \frac{(a+1)(b+1)}{c+1} \sum_{n=0}^{\infty} \frac{(a+2)_{n}(b+2)_{n}}{(c+2)_{n}(1)_{n}} + (2+\alpha) \sum_{n=0}^{\infty} \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}} + \frac{c}{ab} \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}
$$

$$
= \frac{\Gamma(c+1)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} \left((a+1)(b+1) + (2+\alpha)(c-a-b-2) + \frac{\alpha}{ab} (c-a-b)^2 \right) - \frac{ac}{ab}.
$$

(2.36)

This last expression is bounded above by $ac/|ab|$ if and only if $(a+1)(b+1) + (2+\alpha)(c-a-b-2) + (\alpha/ab)(c-a-b)^2 \leq 0$, which is equivalent to (2.33).

(ii) In view of (ii) of Lemma 2.2, we need only to show that

$$
\sum_{n=2}^{\infty} n(n-1+\alpha) \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \leq \alpha.
$$

(2.37)

Now,

$$
\sum_{n=0}^{\infty} (n+2)(n+2-(1-\alpha)) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} = \sum_{n=0}^{\infty} (n+2) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} - (1-\alpha) \sum_{n=0}^{\infty} (n+2) \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}}.
$$

(2.38)

Substituting (2.21) into the right-hand side of (2.38), we obtain

$$
\sum_{n=0}^{\infty} \frac{(a)_{n+2}(b)_{n+2}}{(c)_{n+2}(1)_{n+1}} + (2+\alpha) \sum_{n=0}^{\infty} \frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} + a \sum_{n=1}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}.
$$

(2.39)

Since $(a)_{n+k} = (a)_{k}(a+k)_{n}$, we may write (2.39) as

$$
\frac{(a)_{2}(b)_{2}}{(c)_{2}} \frac{\Gamma(c+2)\Gamma(c-a-b-2)}{\Gamma(c-a)\Gamma(c-b)} + (2+\alpha) \frac{ab\Gamma(c+1)\Gamma(c-a-b-1)}{c\Gamma(c-a)\Gamma(c-b)} + \alpha \left(\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} - 1 \right).
$$

(2.40)

By simplification, we see that the last expression is bounded above by α if and only if (2.34) holds. \qed
3. An integral operator

In the next theorems, we obtain similar-type results in connection with a particular integral operator \(G(a, b; c; z) \) acting on \(F(a, b; c; z) \) as follows:

\[
G(a, b; c; z) = \int_0^z F(a, b; c; t) dt.
\]

(3.1)

Theorem 3.1. Let \(a, b > -1, ab < 0 \), and \(c > \max\{0, a + b\} \). Then,

(i) \(G(a, b; c; z) \) defined by (3.1) is in \(S_{P\mathcal{T}}(\alpha, \beta) \) if and only if

\[
\frac{\Gamma(c + 1)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \left(\frac{1}{ab} - \frac{(a + \beta)(c - a - b)}{(a - 1)z(b - 1)_2} \right) + \frac{(a + \beta)(c - 1)_2}{(a - 1)z(b - 1)_2} \leq 0;
\]

(3.2)

(ii) \(G(a, b; c; z) \) defined by (3.1) is in \(P\mathcal{T}(\alpha) \) if and only if

\[
\frac{\Gamma(c + 1)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \left(\frac{1}{ab} + \frac{(a - 1)(c - a - b)}{(a - 1)z(b - 1)_2} \right) - \frac{(a - 1)(c - a)_2}{(a - 1)z(b - 1)_2} \leq 0.
\]

(3.3)

Proof. (i) Since

\[
G(a, b; c; z) = z - \frac{|ab|}{c} \sum_{n=2}^{\infty} \frac{(a + 1)_{n-2}(b + 1)_{n-2}}{(c + 1)_{n-2}(1)_n} z^n,
\]

(3.4)

by (i) of Lemma 2.1, we need only to show that

\[
\sum_{n=2}^{\infty} \frac{(n(1 + \alpha) - (a + \beta))}{(c + 1)_{n-2}(1)_n} \leq (1 - \beta) \frac{c}{|ab|}.
\]

(3.5)

Now,

\[
\sum_{n=0}^{\infty} \frac{(n + 2)(1 + \alpha) - (a + \beta)}{(c + 1)_{n+1}(1)_{n+2}} \frac{(a + 1)_{n}(b + 1)_n}{(c + 1)_{n}(1)_n} + \frac{\Gamma(c + 1)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \left(\frac{1}{ab} - \frac{(a + \beta)(c - a - b)}{(a - 1)z(b - 1)_2} \right)
\]

\[
\leq (1 - \beta) \frac{c}{|ab|},
\]

(3.6)

which is equivalent to (3.2).
(ii) According to (i) of Lemma 2.2, it is sufficient to show that
\[\sum_{n=0}^{\infty} (n + 1 + \alpha) \frac{(a + 1)n(b + 1)n}{(c + 1)n^2(1)_n}, \]
which is equivalent to
\[\sum_{n=0}^{\infty} (n + 1 + \alpha) \frac{(a + 1)n(b + 1)n}{(c + 1)n^2(1)_n} \leq \frac{\alpha c}{|ab|}. \] (3.7)

Now,
\[
\sum_{n=0}^{\infty} (n + 1 + \alpha) \frac{(a + 1)n(b + 1)n}{(c + 1)n^2(1)_n+2}
\]
\[
= \sum_{n=0}^{\infty} \frac{(a + 1)n(b + 1)n}{(c + 1)n^2(1)_n+1} + (\alpha - 1) \sum_{n=0}^{\infty} \frac{(a + 1)n(b + 1)n}{(c + 1)n^2(1)_n+2}
\]
\[
= \frac{c}{ab} \left(\frac{\Gamma(c)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b) - 1} \right)
\]
\[
+ (\alpha - 1) \frac{c}{ab} \left(\frac{(c - 1)}{(a - 1)(b - 1)} \left(\frac{\Gamma(c - 1)\Gamma(c - a - b + 1)}{\Gamma(c - a)\Gamma(c - b)} - 1 \right) \right)
\]
\[
= \frac{\Gamma(c + 1)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} \left(\frac{1}{ab} + \frac{(a - 1)(c - a - b)}{(a - 1)(b - 1)^2} - \frac{(a - 1)(c - 1)}{(a - 1)(b - 1)^2} - \frac{\alpha c}{ab} \right)
\]
\[
\leq \frac{\alpha c}{|ab|},
\]
which is equivalent to (3.3).

Now, we observe that \(G(a, b; c; z) \in \mathcal{MC}(\alpha, \beta)(\mathcal{CP}(\alpha)) \) if and only if \(zF(a, b; c; z) \in S_p(\alpha, \beta)(\mathcal{CP}(\alpha)) \). Thus, any result of functions belonging to the class \(S_p(\alpha, \beta)(\mathcal{CP}(\alpha)) \) about \(zF \) leads to that of functions belonging to the class \(\mathcal{MC}(\alpha, \beta)(\mathcal{CP}(\alpha)) \). Hence, we obtain the following analogues to Theorems 2.3 and 2.5.

Theorem 3.2. Let \(a, b > -1, \ ab < 0, \text{ and } c > a + b + 2. \) Then,

(i) \(G(a, b; c; z) \) defined by (3.1) is in \(\mathcal{MC}(\alpha, \beta) \) if and only if
\[
c \geq a + b + 1 - \frac{(1 + a)ab}{(1 - \beta)}, \] (3.9)

(ii) \(G(a, b; c; z) \) defined by (3.1) is in \(\mathcal{CP}(\alpha) \) if and only if
\[
c \geq a + b + 1 - \frac{ab}{\alpha}. \] (3.10)

References

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>March 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>September 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com