Research Article

Some Characterizations of Open, Closed, and Continuous Mappings

Navpreet Singh Noorie and Rajni Bala

Department of Mathematics, Faculty of Physical Sciences, Punjabi University, Patiala 147002, India

Correspondence should be addressed to Navpreet Singh Noorie, navresmath@yahoo.com

Received 9 October 2007; Accepted 19 January 2008

Recommended by Sehie Park

We obtain new characterizations of open maps in terms of closures, of closed maps in terms of interiors, and of continuous maps in terms of interiors. Further open (closed) onto maps $f : X \to Y$ are described in terms of images under $f$ of certain closed (open) sets in $X$. Continuity of (onto) maps is also characterized in terms of saturated sets.

Copyright © 2008 N. S. Noorie and R. Bala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

It is well known that a map $f : X \to Y$ between arbitrary topological spaces is open if and only if $(f(A))^O \supset f(A^O)$ for arbitrary subsets $A$ of $X$, where $A^O$ denotes the interior of $A$ (see [1]). On the other hand, Schochetman has shown in [2] that if $X$ and $Y$ are metric spaces, then $f$ is open if and only if $f^{-1}(y) \subset \limsup_n f^{-1}(y_n)$, for every convergent sequence $\{y_n\}$ with $\lim_n y_n = y$ in $Y$. We are motivated by the simple but important observation that not only is the set $\limsup_n f^{-1}(y_n)$ closed (special case of [2, Lemma 2.1]) but the set $\{y \in Y : f^{-1}(y) \subset \limsup_n f^{-1}(y_n)\}$ is also closed whenever $f$ is an open map. It is then easy to generalize that a map $f : X \to Y$ between arbitrary topological spaces is open if and only if for any closed set $F$ in $X$ the set $f^\#(F) = \{y \in Y : f^{-1}(y) \subset F\}$ is closed in $Y$. This raises the question if we can describe open maps in terms of inclusion relation involving closures of certain subsets, perhaps involving $f^\#$, rather than in terms of the well-known inclusion relation involving interiors mentioned in the beginning.

Further, it has been shown in [3, 2.5 Problem 321] that an onto map $f : X \to Y$ is closed if and only if for every open set $U$ in $X$, the set $f^\#(U) = \{y \in Y : f^{-1}(y) \subset U\}$ is open in $Y$. (We see in Theorem 2.10 below that we can drop the condition of onto in this result.) This again suggests the possibility of describing closed maps in terms of inclusion relation involving interiors of certain subsets, perhaps involving $f^\#$, rather than in terms of the well-known inclusion relation involving closures, namely, that a map $f : X \to Y$ between
Corollary 2.15

Notation 1. For any sets X and Y, let \( f: X \to Y \) be any map and \( E \) any subset of \( X \). Then

(i) \( f^\#(E) = \{ y \in Y : f^{-1}(y) \subseteq E \} \);

(ii) \( E^\# = f^{-1}(f^\#(E)) \).

Remark 1.1. Let \( f: X \to Y \) be continuous and \( E \) be any subset of \( X \), where \( X \) and \( Y \) are topological spaces. Then \( E^\# \) is open in \( X \) whenever \( f^\#(E) \) is open in \( Y \). The converse holds, if \( f \) is onto and follows from Theorem 2.14 below.

2. Results

Definition 2.1. For any sets \( X \) and \( Y \), a subset \( E \) of \( X \) will be called a saturated subset of \( X \) under a map \( f: X \to Y \) if for some subset \( B \) of \( Y \), \( E = f^{-1}(B) \). Equivalently, if \( E = f^{-1}(f(E)) \).

Remark 2.2. For any map \( f: X \to Y \), \( E^\# \) is saturated for each subset \( E \) of \( X \).

We begin with the following lemmas. The proof of the Lemma 2.3 is straightforward from the definitions and is omitted.

Lemma 2.3. For any sets \( X \) and \( Y \), let \( f: X \to Y \) be any map and \( E \) be any subset of \( X \). Then

(i) if \( A \subset B \), then \( f^\#(A) \subset f^\#(B) \);

(ii) \( f(E^\#) = f^\#(E) \cap f(X) \);

(iii) \( E^\# = \{ f^{-1}y : y \in Y \text{ and } f^{-1}y \subset E \} \subset E \);

(iv) \( f^\#(\phi) = [f(X)]^C \);

(v) \( f^\#(X) = Y \), \( X^\# = X \), and \( \phi^\# = \phi \);

(vi) \( f(E^\#) = f^\#(E) \cap f(E) \);

(vii) \( f^\#(E^C) = [f(E)]^C \) and so \( f^\#(E) = [f(E^C)]^C \) and \( f(E) = [f^\#(E)]^C \);

(viii) \( f^\#(E^\#) = f^\#(E) \);

(ix) \( E \) is saturated if and only if \( E = E^\# \).

Remark 2.4. If \( f: X \to Y \) is continuous, then for any saturated set \( E \) in \( X \), \( E \) is open in \( X \) whenever \( f^\#(E) \) is open in \( Y \). This follows from Remark 1.1 and (ix) above.

The following lemma gives characterization of onto maps.
Lemma 2.5. For any map \( f: X \rightarrow Y \), where \( X \) and \( Y \) are any sets, the following conditions are equivalent:

(a) \( f \) is onto;
(b) \( f^*(A) = f(A^c) \) for each subset \( A \) of \( X \);
(c) \( f^*(A) \subseteq f(A) \) for each subset \( A \) of \( X \);
(d) \( f^*(\phi) = \phi \).

Proof. (a)\(\Rightarrow\)(b) follows from the definition of \( A^\phi \).
(b)\(\Rightarrow\)(c) follows from Lemma 2.3(iii).
(c)\(\Rightarrow\)(d) is obvious.
(d)\(\Rightarrow\)(a) follows from Lemma 2.3(iv). \( \square \)

Remark 2.6. From now onwards, all spaces are assumed to be arbitrary topological spaces.

Theorem 2.7. For any map \( f: X \rightarrow Y \), the following conditions are equivalent.

(a) \( f \) is an open map, that is, for each subset \( A \) of \( X \), \( f(A^O) \subset f(A) \);
(b) for each subset \( A \) of \( X \), \( \text{Cl}(f^*(A)) \subset f^*(\text{Cl}(A)) \);
(c) for each closed subset \( F \) of \( X \), \( f^*(F) \) is closed in \( Y \).

Proof. (a)\(\Rightarrow\)(b): By Lemma 2.3(vii), \( \text{Cl}(f^*(A)) = \text{Cl}((f(A^c))^c) = [(f(A^c))^O]^c \subset [f((A^c)^O)]^c \), since (a) holds. Therefore, \( \text{Cl}(f^*(A)) \subset [f((A^c)^O)]^c = f^*(\text{Cl}(A)) \) by Lemma 2.3(vii) again. Hence, \( \text{Cl}(f^*(A)) \subset f^*(\text{Cl}(A)) \) and so (b) holds.
(b)\(\Rightarrow\)(c): Let \( F \) be any closed subset of \( X \). Then \( \text{Cl}(F) = F \) and so (b) implies that \( \text{Cl}(f^*(F)) \subset f^*(F) \). Hence \( f^*(F) \) is closed, and (c) holds.
(c)\(\Rightarrow\)(a): Let \( U \) be any open subset of \( X \). Then (c) implies that \( f^*(U^c) \) is closed in \( Y \). But \( f^*(U^c) = [f(U)]^c \), by Lemma 2.3(vii). Therefore, \( f(U) \) is open in \( Y \). Hence \( f \) is an open map. This proves (a). \( \square \)

Corollary 2.8. Let \( f: X \rightarrow Y \) be onto. Then \( f \) is an open map if and only if for each closed subset \( F \) of \( X \), \( f(F^c) \) is closed in \( Y \).

Proof. The proof follows immediately from the equivalence of (a) and (c) in the above theorem and Lemma 2.5(b). \( \square \)

In the next corollary, we see that interestingly images of saturated closed sets under open surjections are closed sets.

Corollary 2.9. Let \( f: X \rightarrow Y \) be an open onto map. Then for each saturated closed subset \( F \) of \( X \), \( f(F) \) is closed in \( Y \). In particular, for any set \( A \), if \( A^\phi \) is closed, then \( f(A^\phi) \) is closed in \( Y \).

Theorem 2.10. For any map \( f: X \rightarrow Y \), the following conditions are equivalent.

(a) \( f \) is closed, that is, for each subset \( A \) of \( X \), \( \text{Cl}(f(A)) \subset f(\text{Cl}(A)) \);
(b) for each subset \( A \) of \( X \), \( f^*(A^O) \subset [f^*(A)]^O \);
(c) for each open subset \( U \) of \( X \), \( f^*(U) \) is open in \( Y \).
Proof. (a)⇒(b): By Lemma 2.3(vii) and condition (a), $f^\#(A^O) = [f((A^O)^C)]^C = [f(Cl(A^C))]^C \subset [Cl(f(A^C))]^C = [Cl(f^\#(A)^C)]^C = [f^\#(A)]^O$. Hence, $f^\#(A^O) \subset [f^\#(A)]^O$, and (b) holds.

(b)⇒(c): If $U$ is any open subset of $X$, then $U = U^O$ and (b) implies that $f^\#(U) \subset [f^\#(U)]^O$. Therefore, $f^\#(U)$ is an open set and (c) holds.

(c)⇒(a): Let $F$ be any closed subset of $X$. Then (c) implies $f^\#(F^C)$ is open in $Y$. Therefore, part (vii) of Lemma 2.3 implies that $[f(F)]^C = f^\#(F^C)$ is open in $Y$. Thus, $f(F)$ is closed in $Y$, and hence $f$ is a closed map. □

Corollary 2.11. Let $f : X \rightarrow Y$ be onto. Then $f$ is a closed map if and only if for each open subset $U$ of $X$, $f(U^\#)$ is open in $Y$.

Proof. The proof follows immediately from the equivalence of (a) and (c) in the above theorem, since $f(U^\#) = f^\#(U)$ if $f$ is onto by Lemma 2.5(b). □

In the next corollary we see that interestingly images of saturated open sets under closed surjections are open sets.

Corollary 2.12. Let $f : X \rightarrow Y$ be a closed onto map. Then for each saturated open set $U$ in $X$, $f(U)$ is open in $Y$. In particular, for any set $A$, if $A^\#$ is open, then $f(A^\#)$ is open in $Y$.

The remaining results of this section give characterizations of continuous maps.

The following Theorem 2.13 is an analog, in terms of interiors, of the result that a map $f : X \rightarrow Y$ is continuous if and only if for each subset $A$ of $X$, $f(Cl(A)) \subset Cl(f(A))$.

Theorem 2.13. A map $f : X \rightarrow Y$ is continuous if and only if for each subset $A$ of $X$, $[f^\#(A)]^O \subset f^\#(A^O)$.

Proof. We know that $f$ is continuous if and only if for each subset $A$ of $X$, $f(Cl(A)) \subset Cl(f(A))$. But by part (vii) of Lemma 2.3, $f[Cl(A)] \subset Cl(f(A))$ if and only if $[f^\#((Cl(A))^C)]^C \subset Cl([f^\#(A^C)]^C) = ([f^\#(A^C)]^O)^C$. Therefore, $f[Cl(A)] \subset Cl(f(A))$ if and only if $[f^\#(A^C)]^O \subset f^\#((A^C)^O)$. Since this equivalence holds for arbitrary subsets $A$ of $X$, we have $f$ is continuous if and only if $[f^\#(A)]^O \subset f^\#(A^O)$ for each subset $A$ of $X$. □

The following theorem characterizes continuity for onto maps.

Theorem 2.14. Let $f : X \rightarrow Y$ be any onto map. Then the following conditions are equivalent.

(a) $f$ is continuous;
(b) $[f(A^\#)]^O \subset [f((A^O)^\#)]$ for all subsets $A$ of $X$;
(c) $A^\#$ is open in $X$ whenever $f(A^\#)$ is open in $Y$;
(d) for any saturated set $E$ in $X$, $E$ is open in $X$ whenever $f(E)$ is open in $Y$;
(e) for any saturated set $E$ in $X$, $E$ is closed in $X$ whenever $f(E)$ is closed in $Y$.

Proof. Since (a)⇒(b) by Theorem 2.13 above and Lemma 2.5(b), we prove (a)⇒(c)⇒(d)⇒(e)⇒(a).

(a)⇒(c). Since $f^\#(A) = f(A^\#)$, by Lemma 2.5(b), (c) follows from (a) by Remark 1.1.
(c)⇒(d). Since $E$ is saturated if and only if $E = E^\#$, (d) follows from (c) for arbitrary $f$.
(d)⇒(e). Let $f(E)$ be closed in $Y$, where $E$ is saturated in $X$. Then $[f(E)]^C$ is open in $Y$ and $[f(E)]^C = f^\#(E^C)$, by Lemma 2.3(vii). Then $f$ is onto implies $[f(E)]^C = f[(E^C)^\#]$ by Lemma 2.5(b).
Also $E$ is saturated implies $E^C$ is also saturated and so $(E^C)^\# = E^C$, by Lemma 2.3(ix). Therefore, $[f(E)]^C = f(E^C)$ and so $f(E)$ closed in $Y$ implies that $f(E^C)$ is open in $Y$ and therefore, by (d), $E^C$ is open and so $E$ is closed in $X$, proving thereby that (e) holds.

(e)$\Rightarrow$(a). Let $S$ be any closed subset of $Y$ and let $E = f^{-1}(S)$. Then $f(E) = S$, since $f$ is onto, and so $f(E)$ is closed for a saturated subset $E$ of $X$. Therefore, by condition (e), $E = f^{-1}(S)$ is closed in $X$. Hence, $f$ is continuous.

Corollary 2.15. A map $f : X \to Y$ is continuous if and only if for any saturated set $E$ in $X$, $E$ is open (closed) in $X$, whenever $f(E)$ is open (closed) in $f(X)$.

Proof. The proof follows from the equivalence of (a) and (d) ((a) and (e)) above since the map $f : X \to f(X)$ is onto. 

References

Mathematical Problems in Engineering

Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>February 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>August 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors
José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br
Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br
Celso Grebogi, Department of Physics, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com