Research Article

Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains

Serena Boccia, Sara Monsurrò, and Maria Transirico

Dipartimento di Matematica e Informatica, Università di Salerno, via Ponte don Melillo, 84084 Fisciano, Italy

Correspondence should be addressed to Maria Transirico, mtransirico@unisa.it

Received 10 May 2008; Accepted 20 August 2008

Recommended by Manfred H. Moller

We study in this paper a class of second-order linear elliptic equations in weighted Sobolev spaces on unbounded domains of \(\mathbb{R}^n, n \geq 3 \). We obtain an a priori bound, and a regularity result from which we deduce a uniqueness theorem.

Copyright © 2008 Serena Boccia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let \(\Omega \) be an open subset of \(\mathbb{R}^n, n \geq 3 \). Assign in \(\Omega \) the uniformly elliptic second-order linear differential operator

\[
L = - \sum_{i,j=1}^{n} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i} + a,
\]

(1.1)

with coefficients \(a_{ij} = a_{ji} \in L^\infty(\Omega), i, j = 1, \ldots, n \), and consider the associate Dirichlet problem:

\[
\begin{align*}
 u & \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega), \\
 Lu &= f, \quad f \in L^p(\Omega),
\end{align*}
\]

(1.2)

where \(p \in [1, +\infty[\).

It is well known that if \(\Omega \) is a bounded and sufficiently regular set, the above problem has been widely investigated by several authors under various hypotheses of discontinuity on the leading coefficients, in the case \(p = 2 \) or \(p \) sufficiently close to 2. In particular, some \(W^{2,p} \)-bounds for the solutions of the problem (1.2) and related existence and uniqueness results have been obtained. Among the other results on this subject, we quote here those
proved in [1], where the author assumed that \(a_{ij} \)’s belong to \(W^{1,n}(\Omega) \) (and considered the case \(p = 2 \)) and in [2–4] (where the coefficients belong to some classes wider than \(W^{1,n}(\Omega) \)). More recently, a relevant contribution has been given in [5–8], where the coefficients \(a_{ij} \) are assumed to be in the class VMO and \(p \in]1, +\infty[\); observe here that VMO contains the space \(W^{1,n}(\Omega) \).

If the set \(\Omega \) is unbounded and regular enough, under assumptions similar to those required in [1], problem (1.2) has for instance been studied in [9–11] with \(p = 2 \), and in [12] with \(p \in]1, +\infty[\). Instead, in [13, 14] the leading coefficients satisfy restrictions similar to those in [5, 6].

In this paper, we extend some results of [13, 14] to a weighted case. More precisely, we denote by \(\rho \) a weight function belonging to a suitable class such that

\[
\inf_{\Omega} \rho > 0, \quad \lim_{|x| \to +\infty} \rho(x) = +\infty, \tag{1.3}
\]

and consider the Dirichlet problem:

\[
\begin{align*}
u & \in W^{2,p}_s(\Omega) \cap W^{1,p}_s(\Omega), \\
Lu & = f, \quad f \in L^p(\Omega),
\end{align*}
\tag{1.4}
\]

where \(s \in \mathbb{R}, W^{2,p}_s(\Omega), W^{1,p}_s(\Omega) \), and \(L^p(\Omega) \) are some weighted Sobolev spaces and the weight functions are a suitable power of \(\rho \). We obtain an a priori bound for the solutions of (1.4). Moreover, we state a regularity result that allows us to deduce a uniqueness theorem for the problem (1.4). A similar weighted case was studied in [15] with the leading coefficients satisfying hypotheses of Miranda’s type and when \(p = 2 \).

2. Weight functions and weighted spaces

Let \(G \) be any Lebesgue measurable subset of \(\mathbb{R}^n \) and let \(\Sigma(G) \) be the collection of all Lebesgue measurable subsets of \(G \). If \(F \in \Sigma(G) \), denote by \(|F| \) the Lebesgue measure of \(F \), by \(\chi_F \) the characteristic function of \(F \), by \(F(x,r) \) the intersection \(F \cap B(x,r) \) (\(x \in \mathbb{R}^n, r \in \mathbb{R}_+ \))—where \(B(x,r) \) is the open ball of radius \(r \) centered at \(x \)—and by \(\mathcal{S}(F) \) the class of restrictions to \(F \) of functions \(\zeta \in C_0^\infty(\mathbb{R}^n) \) with \(\overline{F} \cap \text{supp} \zeta \subseteq F \). Moreover, if \(X(F) \) is a space of functions defined on \(F \), we denote by \(X_{\text{loc}}(F) \) the class of all functions \(g : F \to \mathbb{R} \), such that \(\zeta g \in X(F) \) for any \(\zeta \in \mathcal{S}(F) \).

We introduce a class of weight functions defined on an open subset \(\Omega \) of \(\mathbb{R}^n \). Denote by \(\mathcal{A}(\Omega) \) the set of all measurable functions \(\rho : \Omega \to \mathbb{R}_+ \), such that

\[
\gamma^{-1} \rho(y) \leq \rho(x) \leq \gamma \rho(y) \quad \forall y \in \Omega, \quad \forall x \in \Omega(y, \rho(y)),
\tag{2.1}
\]

where \(\gamma \in \mathbb{R}_+ \) is independent of \(x \) and \(y \). Examples of functions in \(\mathcal{A}(\Omega) \) are the function

\[
x \in \mathbb{R}^n \mapsto 1 + a|x|, \quad a \in]0, 1[,
\tag{2.2}
\]

and, if \(\Omega \neq \mathbb{R}^n \) and \(S \) is a nonempty subset of \(\partial \Omega \), the function

\[
x \in \Omega \mapsto a \text{dist}(x, S), \quad a \in]0, 1[.
\tag{2.3}
\]
For $\rho \in \mathcal{A}(\Omega)$, we put

$$S_\rho = \{ z \in \partial \Omega : \lim_{x \to z} \rho(x) = 0 \}. \quad (2.4)$$

It is known that

$$\rho \in L^\infty_{\text{loc}}(\Omega), \quad \rho^{-1} \in L^\infty_{\text{loc}}(\overline{\Omega} \setminus S_\rho) \quad (2.5)$$

(see [16, 17]).

We assign an unbounded open subset Ω of \mathbb{R}^n.

Let ρ_1 be a function, such that $\rho_1 \in \mathcal{A}(\mathbb{R}^n)$ and

$$\inf_\Omega \rho_1 > 0, \quad \lim_{|x| \to +\infty} \rho_1(x) = +\infty. \quad (2.6)$$

We put

$$\rho = \rho_1|_{\Omega}. \quad (2.7)$$

For any $a \in [0, 1]$ and $x \in \mathbb{R}^n$, we set

$$I_a(x) = \Omega(x, a\rho_1(x)). \quad (2.8)$$

If $k \in \mathbb{N}_0$, $1 \leq p < +\infty$, $s \in \mathbb{R}$, and $\rho \in \mathcal{A}(\Omega)$, consider the space $W^{k,p}_s(\Omega)$ of distributions u on Ω, such that $\rho^s \partial^a u \in L^p(\Omega)$ for $|a| \leq k$, equipped with the norm

$$\|u\|_{W^{k,p}_s(\Omega)} = \sum_{|a| \leq k} \|\rho^s \partial^a u\|_{L^p(\Omega)}. \quad (2.9)$$

Moreover, denote by $W^{k,p}_s(\Omega)$ the closure of $C_0^\infty(\Omega)$ in $W^{k,p}_s(\Omega)$ and put $W^{k,p}_s(\Omega) = L^p_0(\Omega)$. A more detailed account of properties of the above defined spaces can be found, for instance, in [18].

From [15, Lemmas 1.1 and 2.1], we deduce the following two lemmas, respectively.

Lemma 2.1. For any $p \in [1, +\infty[, s \in \mathbb{R}$, and $a \in [0, 1]$, $g \in L^p_0(\Omega)$ if and only if $g \in L^p_0(\overline{\Omega})$ and the function $x \in \mathbb{R}^n \rightarrow \rho_1^{s-n/p}(x)\|g\|_{L^p(I_a(x))}$ belongs to $L^p(\mathbb{R}^n)$. Moreover, there exist $c_1, c_2 \in \mathbb{R}_+$, such that

$$c_1 \|g\|_{L^p_0(\Omega)} \leq \int_{\mathbb{R}^n} \rho_1^{s-n/p}(x)\|g\|_{L^p(I_a(x))}^p \, dx \leq c_2 \|g\|_{L^p_0(\Omega)}^p \quad \forall g \in L^p_0(\Omega), \quad (2.10)$$

where c_1 and c_2 depend on n, p, s, a, and ρ.

Lemma 2.2. If Ω has the segment property, then for any $k \in \mathbb{N}_0$, $p \in [1, +\infty[, \rho \in \mathcal{A}(\mathbb{R}^n)$, and $s \in \mathbb{R}$ one has

$$W^{k,p}_s(\Omega) \cap W^{k,p}_s(\overline{\Omega}) = W^{k,p}_s(\Omega). \quad (2.11)$$
3. Some embedding lemmas

We now recall the definitions of the function spaces in which the coefficients of the operator will be chosen. If Ω has the property

$$|\Omega(x, r)| \geq Ar^n \quad \forall x \in \Omega, \forall r \in]0, 1],$$

(3.1)

where A is a positive constant independent of x and r, it is possible to consider the space $\text{BMO}(\Omega, \tau)$ ($\tau \in \mathbb{R}_+$) of functions $g \in L^1_{\text{loc}}(\overline{\Omega})$ such that

$$[g]_{\text{BMO}(\Omega, \tau)} = \sup_{x \in \Omega} \frac{1}{\tau} \sup_{r \in [0, \tau]} \left| \frac{r^n}{|\Omega(x, r)|} \int_{\Omega(x, r)} g - \int_{\Omega} g \right| < +\infty,$$

(3.2)

where

$$\int_{\Omega(x, r)} g = |\Omega(x, r)|^{-1} \int_{\Omega} g.$$

(3.3)

If $g \in \text{BMO}(\Omega) = \text{BMO}(\Omega, \tau_A)$, where

$$\tau_A = \sup \left\{ \tau \in \mathbb{R}_+ : \sup_{x \in \Omega} \frac{1}{\tau} \sup_{r \in [0, \tau]} \left| \frac{r^n}{|\Omega(x, r)|} \right| \leq \frac{1}{A} \right\},$$

(3.4)

we will say that $g \in \text{VMO}(\Omega)$ if $[g]_{\text{BMO}(\Omega, \tau)} \to 0$ for $\tau \to 0^+$. A function $\eta[g] :]0, 1] \to \mathbb{R}_+$ is called a modulus of continuity of g in $\text{VMO}(\Omega)$ if

$$[g]_{\text{BMO}(\Omega)} \leq \eta[g](\tau) \quad \forall \tau \in]0, 1], \quad \lim_{\tau \to 0^+} \eta[g](\tau) = 0.$$

(3.5)

For $t \in [1, +\infty[$ and $\lambda \in [0, n]$, we denote by $M^{t, 1}(\Omega)$ the set of all functions g in $L^1_{\text{loc}}(\overline{\Omega})$ such that

$$\|g\|_{M^{t, 1}(\Omega)} = \sup_{r \in [0, 1]} r^{-1/t} \|g\|_{L^t(\Omega(x, r))} < +\infty,$$

(3.6)

endowed with the norm defined by (3.6). Then, we define $M_0^{t, 1}(\Omega)$ as the closure of $C^\infty(\Omega)$ in $M^{t, 1}(\Omega)$. In particular, we put $M^t(\Omega) = M^{1,0}(\Omega)$, and $M_0^t(\Omega) = M_0^{1,0}(\Omega)$. In order to define the modulus of continuity of a function g in $M_0^{t, 1}(\Omega)$, recall first that for a function $g \in M^{t, 1}(\Omega)$ the following characterization holds:

$$g \in M_0^{t, 1}(\Omega) \iff \lim_{\tau \to 0^+} (p_g(\tau) + \|(1 - \zeta_{1/\tau})g\|_{M^{t, 1}(\Omega)}) = 0,$$

(3.7)

where

$$p_g(\tau) = \sup_{E \in \Sigma(\Omega)} \sup_{\sup_{\text{dist}(F(x, 1)) \leq \tau} E(x, 1) \leq \tau} \|\chi_E g\|_{M^{t, 1}(\Omega)},$$

(3.8)
and $\zeta_r, r \in \mathbb{R}_+$, is a function in $C_0^\infty(\mathbb{R}^n)$ such that

$$0 \leq \zeta_r \leq 1, \quad \zeta_r|_{\mathbb{R}_+^n} = 1, \quad \text{supp} \ zeta_r \subset B_{2r},$$

(3.9)

with the position $B_r = B(0, r)$. Thus, the modulus of continuity of $g \in M_0^1(\Omega)$ is a function

$$\sigma_c[g] : [0, 1] \rightarrow \mathbb{R}_+,$$

such that

$$p_\varepsilon(\tau) + \| (1 - \zeta_1/r) g \|_{M^1(\Omega)} \leq \sigma_c[g](\tau) \quad \forall \tau \in [0, 1], \quad \lim_{\tau \rightarrow 0} \sigma_c[g](\tau) = 0.$$

(3.11)

A more detailed account of properties of the above defined function spaces can be found in [9, 19, 20].

We consider the following condition:

(h0) Ω has the cone property, $p \in [1, +\infty[, s \in \mathbb{R}, k, h, t$ are numbers such that

$$k \in \mathbb{N}, \quad h \in \{0, 1, \ldots, k-1\}, \quad t \geq p, \quad t > p \quad \text{if } p = \frac{n}{k-h}, \quad g \in M^1(\Omega).$$

(3.12)

From [21, Theorem 3.1] we have the following.

Lemma 3.1. If the assumption (h0) holds, then for any $u \in W^{k,p}_s(\Omega)$ one has $g \partial^h u \in L^p(\Omega)$ and

$$\| g \partial^h u \|_{L^p(\Omega)} \leq c \| g \|_{M^1(\Omega)} \| u \|_{W^{k,p}_s(\Omega)},$$

(3.13)

with c dependent only on Ω, n, k, h, p, t, s.

From [21, Theorem 3.2] it follows Lemma 3.2.

Lemma 3.2. If the assumption (h0) is satisfied and in addition $g \in M^1_s(\Omega)$, then for any $\varepsilon \in \mathbb{R}_+$ there exist a constant $c(\varepsilon) \in \mathbb{R}_+$ and a bounded open set $\Omega_e \subset \subset \Omega$, with the cone property, such that

$$\| g \partial^h u \|_{L^p(\Omega)} \leq \varepsilon \| u \|_{W^{k,p}_s(\Omega)} + c(\varepsilon) \| u \|_{L^p(\Omega)}, \quad \forall u \in W^{k,p}_s(\Omega),$$

(3.14)

where $c(\varepsilon), \Omega_e$ depend on $\varepsilon, \Omega, n, k, h, p, t, s, k, s$, and $\sigma_c[g]$.

4. An a priori bound

Assume that Ω is an unbounded open subset of $\mathbb{R}^n, n \geq 3$, with the uniform $C^{1,1}$-regularity property, and let ρ be the function defined by (2.7). Moreover, let $p \in [1, +\infty[\quad \text{and} \quad s \in \mathbb{R}$.

Consider in Ω the differential operator:

$$L = -\sum_{i,j=1}^n a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^n a_i \frac{\partial}{\partial x_i} + a,$$

(4.1)
Theorem 4.1. If the hypotheses \(\Omega \) and a bounded open subset \(\Omega \) with the following conditions on the coefficients:

\[
\begin{align*}
(a) & \quad a_{ij} = a_{ji} \in L^\infty(\Omega) \cap \text{VMO}_{\text{loc}}(\Omega), \quad i, j = 1, \ldots, n, \\
(b) & \quad \exists \nu > 0 : \sum_{i,j=1}^n a_{ij} h_i^2 \geq \nu |h|^2 \text{ a.e. in } \Omega, \quad \forall h \in \mathbb{R}^n,
\end{align*}
\]

(4.2)

there exist functions \(e_{ij}, i, j = 1, \ldots, n, \) and \(\mu \in \mathbb{R}_+ \) such that

\[
\begin{align*}
(e) & \quad e_{ij} \in L^\infty(\Omega), \quad (e_{ij})_{x_n} \in M_c^1(\Omega), \quad \text{with } t \in [2, n], \ i, j, h = 1, \ldots, n, \\
& \quad \sum_{i,j=1}^n e_{ij} h_i^2 \geq \mu |h|^2 \text{ a.e. in } \Omega, \quad \forall h \in \mathbb{R}^n, \\
& \quad g \in L^\infty(\Omega), \quad g_0 = \text{ess inf}_\Omega g > 0, \\
& \quad \lim_{r \to 0} \sum_{i,j=1}^n \|e_{ij} - ga_{ij}\|_{L^\infty(\Omega, B_r)} = 0,
\end{align*}
\]

(4.3)

\[
\begin{align*}
(f) & \quad a_i \in M^{1\alpha}(\Omega), \quad i = 1, \ldots, n, \\
& \quad a = a' + a'', \quad a' \in M^{1\alpha}(\Omega), \quad a'' \in L^\infty(\Omega), \quad \text{ess inf}_\Omega a' = a'' > 0,
\end{align*}
\]

(4.4)

where

\[
\begin{align*}
t_1 & \geq n \quad \text{if } p < n, \quad t_1 > n \quad \text{if } p = n, \quad t_1 = p \quad \text{if } p > n, \\
t_2 & \geq n/2 \quad \text{if } p < n/2, \quad t_2 > n/2 \quad \text{if } p = n/2, \quad t_2 = p \quad \text{if } p > n/2.
\end{align*}
\]

(4.5)

Observe that under the assumptions (h1)-(h3), it follows that the operator \(L : W_2^p(\Omega) \to L_2^p(\Omega) \) is bounded from Lemma 3.1.

Theorem 4.1. If the hypotheses (h1), (h2), and (h3) are verified, then there exist a constant \(c \in \mathbb{R}_+ \) and a bounded open subset \(\Omega_0 \subset \Omega \), with the cone property, such that

\[
\|u\|_{W_2^{2p}(\Omega)} \leq c\left(\|Lu\|_{L_2^p(\Omega)} + \|u\|_{L_2^p(\Omega_0)}\right), \quad \forall u \in W_2^{2p}(\Omega) \cap W_2^{1,p}(\Omega),
\]

(4.6)

with \(c \) and \(\Omega_0 \) depending on \(n, p, \rho, s, \Omega, \nu, \mu, g_0, a''_0, t, t_1, t_2, \|a_{ij}\|_{L^\infty(\Omega)}, \|e_{ij}\|_{L^\infty(\Omega)}, \|g\|_{L^\infty(\Omega)}, \|a''\|_{L^\infty(\Omega)}, \|\eta (e_{ij} x_n)\|, \sigma_s(a_{ij}), \sigma_s(a'_{ij}), \sigma_s(a'_{ij}) \), where \(r_0 \in \mathbb{R}_+ \) depends on \(n, p, \Omega, \mu, g_0, a''_0, t, \|e_{ij}\|_{L^\infty(\Omega)}, \|g\|_{L^\infty(\Omega)}, \|a''\|_{L^\infty(\Omega)}, \sigma_s(\{e_{ij}\} x_n) \).

Proof. We consider a function \(\phi \in C_0^\infty(\mathbb{R}^n) \), such that

\[
\begin{align*}
\phi|_{B_1} & = 1, \quad \supp \phi \subset B_1, \\
\sup_{\mathbb{R}^n} |\partial^\alpha \phi| & \leq c_{\alpha} \quad \forall \alpha \in \mathbb{N}_0^n.
\end{align*}
\]

(4.7)
where \(c_\alpha \in \mathbb{R}_+ \) depends only on \(\alpha \), fix \(y \in \mathbb{R}^n \) and put
\[
q_r = q_{r,y} : x \in \mathbb{R}^n \longrightarrow \phi \left(\frac{x - y}{\rho_1(y)} \right).
\]

Clearly we have
\[
q_{B(y,(1/2)\rho_1(y))} = 1, \quad \text{supp } q \subset B(y, \rho_1(y)),
\]
\[
\sup_{\mathbb{R}^n} | \partial^\alpha q | \leq c_\alpha \rho_1^{-|\alpha|}(y) \quad \forall \alpha \in \mathbb{N}_0^n.
\]

Now, we put
\[
L_0 = -\sum_{i,j=1}^n a_{ij} \frac{\partial^2}{\partial x_i \partial x_j}
\]
and fix \(u \in W^{2,p}_s(\Omega) \cap W^{1,p}_0(\Omega) \). Since \(q_r u \in W^{2,p}(\Omega) \cap W^{1,p}_s(\Omega) \), from [14, Theorem 3.3], it follows that there exist \(c_1 \in \mathbb{R}_+ \) and a bounded open subset \(\Omega_1 \subset \subset \Omega \), with the cone property, such that
\[
\| q_r u \|_{W^{2,p}(\Omega)} \leq c_1 (\| (L_0 + a'') (q_r u) \|_{L^p(\Omega)} + \| q_r u \|_{L^p(\Omega_1)}),
\]
with \(c_1 \) and \(\Omega_1 \) depending on \(n, p, \Omega, \nu, \mu, \varrho_0, a_0', t, \| a_{ij} \|_{L^\infty(\Omega)}, \| e_{ij} \|_{L^\infty(\Omega)}, \| g \|_{L^\infty(\Omega)}, \| a'' \|_{L^\infty(\Omega)}, \eta [\xi_{2a}, a_{ij} \sigma_0 (e_{ij})_x], \sigma_0 (e_{ij})_x \), where \(r_0 \in \mathbb{R}_+ \) depends on \(n, p, \Omega, \nu, \mu, \varrho_0, a_0', t, \| e_{ij} \|_{L^\infty(\Omega)}, \| g \|_{L^\infty(\Omega)}, \| a'' \|_{L^\infty(\Omega)}, \| a'' \|_{L^\infty(\Omega)}, \sigma_0 (e_{ij})_x \). Since
\[
L_0 (q_r u) = q_r L_0 u - 2 \sum_{i,j=1}^n a_{ij} q_r x_i u_{x_j} - \sum_{i,j=1}^n a_{ij} q_r x_i u_x,
\]
from (4.11) and (4.12), we have
\[
\| q_r u \|_{W^{2,p}(\Omega)}
\]
\[
\leq c_2 \left(\| q_r (L_0 + a'') u \|_{L^p(\Omega)} + \sum_{i,j=1}^n \| q_r x_i u_{x_j} \|_{L^p(\Omega)} + \sum_{i,j=1}^n \| q_r x_i u_x \|_{L^p(\Omega)} + \| q_r u \|_{L^p(\Omega_1)} \right),
\]
with \(c_2 \) dependent on the same parameters of \(c_1 \).

On the other hand, since \(\rho \in L^\infty_{\text{loc}} (\overline{\Omega}) \), we have that
\[
\| q_r u \|_{L^p(\Omega_1)} \leq c_3 \rho_1^{-2} (y) \| u \|_{L^p(I_1(y))},
\]
where \(c_3 \in \mathbb{R}_+ \) depends only on \(\rho \).

Therefore, by (4.13) and (4.14), we deduce the bound:
\[
\| u \|_{W^{2,p}(I_1(y))} \leq \| q_r u \|_{W^{2,p}(\Omega)}
\]
\[
\leq c_4 (\| L_0 u + a'' u \|_{L^p(I_1(y))} + \rho_1^{-1} (y) \| u_x \|_{L^p(I_1(y))} + \rho_1^{-2} (y) \| u \|_{L^p(I_1(y))}),
\]
where \(c_4 \in \mathbb{R}_+ \) depends on the same parameters of \(c_2 \) and on \(\rho \).
From (4.15) it follows
\[
\int_{\mathbb{R}^n} \rho_1^{p_{s-n}}(y) \|u\|_{W^{2,p}(I_t(y))}^p \, dy \\
\leq c_5 \left(\int_{\mathbb{R}^n} \rho_1^{p_{s-n}}(y) \|L_0 u + a'u\|_{L^p(I_t(y))}^p \, dy \\
+ \int_{\mathbb{R}^n} \rho_1^{p_{s-n}-p}(y) \|u_x\|_{L^p(I_t(y))}^p \, dy + \int_{\mathbb{R}^n} \rho_1^{p_{s-n}-2p}(y) \|u\|_{L^p(I_t(y))}^p \, dy \right),
\]
(4.16)

where \(c_5 \in \mathbb{R}_+\) depends on the same parameters of \(c_4\).

Since
\[
L^p_p(\Omega) \hookrightarrow L^p_{s-1}(\Omega), \quad L^p_{s}(\Omega) \hookrightarrow L^p_{s-2}(\Omega),
\]
(4.17)

from (4.16) and from Lemma 2.1 we have that
\[
\|u\|_{W^{2,p}_t(\Omega)} \leq c_6 \left(\|L_0 u + a'u\|_{L^p_t(\Omega)} + \|u_x\|_{L^p_{s-1}(\Omega)} + \|u\|_{L^p_{s-2}(\Omega)} \right),
\]
(4.18)

with \(c_6 \in \mathbb{R}_+\) dependent on the same parameters of \(c_5\) and also on \(s\).

Moreover, from Lemma 3.2 it follows that for any \(\varepsilon \in \mathbb{R}_+\), there exist \(c'(\varepsilon)\), \(c''(\varepsilon) \in \mathbb{R}_+\), and two bounded open sets \(\Omega'_\varepsilon, \Omega''_\varepsilon \subset \subset \Omega\), both with the cone property, such that
\[
\|u_x\|_{L^p_{s-1}(\Omega)} + \|u\|_{L^p_{s-2}(\Omega)} \leq \varepsilon \|u\|_{W^{2,p}_t(\Omega)} + c'(\varepsilon) \|u\|_{L^p(\Omega'_\varepsilon)},
\]
(4.19)

\[
\left\| \sum_{i=1}^n a_i u_x + a' u \right\|_{L^p_t(\Omega)} \leq \varepsilon \|u\|_{W^{2,p}_t(\Omega)} + c''(\varepsilon) \|u\|_{L^p(\Omega'_\varepsilon)},
\]

where \(c'(\varepsilon)\), \(\Omega'_\varepsilon\) depend on \(\varepsilon\), \(\Omega\), \(n\), \(p\), \(\rho\), \(s\), and \(c''(\varepsilon)\), \(\Omega''_\varepsilon\) depend on \(\varepsilon\), \(\Omega\), \(n\), \(p\), \(t_1\), \(t_2\), \(\rho\), \(s\), \(\sigma_0[a_i]\), and \(\sigma_0[a']\).

From (4.18) and (4.19) it follows (4.6) and then we have the result. \(\square\)

5. A uniqueness result

In this section, we will prove our uniqueness theorem. We begin to prove a regularity result.

Lemma 5.1. Suppose that the assumptions \((h_1)\), \((h_2)\), and \((h_3)\) (with \(t_1 > n\) and \(t_2 > n/2\)) hold, and let \(u\) be a solution of the problem

\[
u \in W^{2,q}_{\text{loc}}(\Omega) \cap W^{1,q}_{\text{loc}}(\Omega) \cap L^p_m(\Omega),
\]

\[
Lu \in L^p_q(\Omega),
\]
(5.1)

where \(q \in [1, p]\) and \(m \in \mathbb{R}\). Then, \(u\) belongs to \(W^{2,p}_t(\Omega)\).
Proof. By [13, Lemma 4.1] we have

\[u \in W^{2,p}_\text{loc}(\Omega) \cap W^{1,p}_\text{loc}(\Omega). \]

(5.2)

We choose \(r, r' \in \mathbb{R}_+ \), with \(r < r' < 1 \), and a function \(\phi \in C^\infty(\mathbb{R}^n) \), such that

\[\phi|_{B_r} = 1, \quad \text{supp} \ \phi \subset B_{r'}, \]

\[\sup_{\mathbb{R}^n} |\partial^a \phi| \leq c_\alpha (r' - r)^{-|a|}, \quad \forall \alpha \in \mathbb{N}_0^n, \]

(5.3)

where \(c_\alpha \in \mathbb{R}_+ \) depends only on \(\alpha \).

We fix \(y \in \mathbb{R}^n \) and put

\[\psi = \psi_y : x \in \mathbb{R}^n \to \phi\left(\frac{x - y}{\rho_1(y)} \right). \]

(5.4)

Clearly we have

\[\psi|_{B(y, r\rho_1(y))} = 1, \quad \text{supp} \ \psi \subset B(y, r'\rho_1(y)), \]

\[\sup_{\mathbb{R}^n} |\partial^a \psi| \leq c_\alpha \rho_1^{-|a|}(y) (r' - r)^{-|a|}, \quad \forall \alpha \in \mathbb{N}_0^n. \]

(5.5)

Since \(\psi u \in W^{2,p}(\Omega) \cap W^{1,p}_\text{loc}(\Omega) \), from [14, Theorem 3.3] it follows that there exist \(c_1 \in \mathbb{R}_+ \) and a bounded open subset \(\Omega_1 \subset \subset \Omega \), with the cone property, such that

\[\|\psi u\|_{W^{2,p}(\Omega)} \leq c_1 \left(\|L(\psi u)\|_{L^p(\Omega)} + \|\psi u\|_{L^p(\Omega_1)} \right), \]

(5.6)

with \(c_1 \) and \(\Omega_1 \) depending on \(n, p, \Omega, \nu, \mu, g_0, a_{ij}, t, t_1, t_2, \|a_{ij}\|_{L^\infty(\Omega)}, \|e_{ij}\|_{L^\infty(\Omega)}, \|g\|_{L^\infty(\Omega)}, \|a\|_{L^\infty(\Omega)}, \eta, |\sigma_{ij}|, c_a, c_\sigma, c_a', |\sigma'|, \) where \(t_0 \in \mathbb{R}_+ \) depends on \(n, p, \Omega, \mu, g_0, a_{ij}, t, \|e_{ij}\|_{L^\infty(\Omega)}, \|g\|_{L^\infty(\Omega)}, \|a\|_{L^\infty(\Omega)}, \sigma_{ij}, |\sigma'|, \)

Since

\[L(\psi u) = -\sum_{i,j=1}^n a_{ij}(\psi u)_{x_i x_j} + \sum_{i=1}^n a_i(\psi u)_{x_i} + a \psi u \]

(5.7)

\[= \psi Lu - 2 \sum_{i,j=1}^n a_{ij}(\psi_{x_i} u)_{x_j} + \sum_{i,j=1}^n a_{ij}(\psi_{x_i} u)_{x_j} + \sum_{i=1}^n a_i \psi_{x_i} u, \]

from (5.6) and (5.7), we have

\[\|\psi u\|_{W^{2,p}(\Omega)} \leq c_2 \left(\|\psi Lu\|_{L^p(\Omega)} + \sum_{i,j=1}^n \|\psi_{x_i} u\|_{L^p(\Omega)} + \sum_{i,j=1}^n \|\psi_{x_i} u\|_{L^p(\Omega)} + \sum_{i=1}^n \|a \psi_{x_i} u\|_{L^p(\Omega)} + \|\psi u\|_{L^p(\Omega_1)} \right), \]

(5.8)

with \(c_2 \) dependent on the same parameters of \(c_1 \).
From Lemma 3.1 with \(s = 0 \), we have that
\[
\|a_i q_{x_i} u\|_{L^p(\Omega)} \leq c_3 \|a_i\|_{M^{1,p}(\Omega)} \left(\|q_{x_i} u\|_{L^p(\Omega)} + \|(q_{x_i} u)_{x_i}\|_{L^p(\Omega)} \right),
\]
with \(c_3 \) dependent on \(\Omega, n, p, \) and \(t_1 \).

Using \(\|q_{x_i} u\|_{L^p(\Omega)} + \|(q_{x_i} u)_{x_i}\|_{L^p(\Omega)} \leq c_4 \left(\|q_{x_i} u\|_{L^p(\Omega)} \right)^{1/2} + \|q_{x_i} u\|_{L^p(\Omega)} \),
\[
\|q_{x_i} u\|_{L^p(\Omega)} \leq c_4 \left(\|q_{x_i} u\|_{L^p(\Omega)} \right)^{1/2} + \|q_{x_i} u\|_{L^p(\Omega)}.
\]

where the constant \(c_4 \) depends on \(\Omega, n, p \).

Thus, by (5.8)–(5.10), with easy computations, we deduce the bound:
\[
\|u\|_{W^{2,p}(L^p(\Omega))} \leq \|\psi u\|_{W^{2,p}(\Omega)} \leq c_5 (r' - r)^{-2}
\times \left(\|Lu\|_{L^p(I,y)} + \|u\|^p_{W^{2,p}(L^p(\Omega))} \right)^{1/2} \left(\rho_1^{-1}(y) \|u\|_{L^p(I,y)} \right)^{1/2} + \rho_1^{-1}(y) \|u\|_{L^p(I,y)},
\]

where \(c_5 \in \mathbb{R}_+ \) depends on \(n, p, \rho, \Omega, \eta, \mu, g_0, a_0^n, t, t_1, t_2, \|a_{ij}\|_{L^p(\Omega)}, \|e_{ij}\|_{L^p(\Omega)}, \|\theta\|_{L^p(\Omega)}, \|a''\|_{L^p(\Omega)}, \eta_{ij} a_{ij} \), \(\sigma_i [e_{ij}, (e_{ij})_x], \|a_{ij}\|_{M^{1,p}(\Omega)}, \sigma_i [a_i], \sigma_i [a'] \).

By a well-known monotonicity of Miranda (see [23, Lemma 3.1]), it follows from (5.11) that
\[
\|u\|_{W^{2,p}(L^p(I,y))} \leq c_6 \left(\|Lu\|_{L^p(I,y)} + \rho_1^{-1}(y) \|u\|_{L^p(I,y)} \right)^{1/2} \|u\|_{W^{2,p}(L^p(I,y))}.
\]

and then, using Young’s inequality, we deduce from (5.12) that
\[
\|u\|_{W^{2,p}(L^p(I,y))} \leq c_7 \left(\|Lu\|_{L^p(I,y)} + \rho_1^{-1}(y) \|u\|_{L^p(I,y)} \right),
\]

with \(c_7 \in \mathbb{R}_+ \) dependent on the same parameters of \(c_5 \).

From (5.13) it follows
\[
\int_{\mathbb{R}^n} \rho_1^{p-1}(y) \|u\|_{W^{2,p}(L^p(I,y))}^p \, dy
\leq c_8 \left(\int_{\mathbb{R}^n} \rho_1^{p-1}(y) \|Lu\|_{L^p(I,y)}^p \, dy \right) \left(\int_{\mathbb{R}^n} \rho_1^{p-1}(y) \|u\|_{L^p(I,y)}^p \, dy \right),
\]

where \(c_8 \in \mathbb{R}_+ \) depends on the same parameters of \(c_7 \).

If \(m \geq s - 1 \), since
\[
L^{p_m}_m(\Omega) \hookrightarrow L^{p_{s-1}}(\Omega),
\]
from (5.14) and from Lemma 2.1 we have that
\[
\|u\|_{W^{2,p}_s(\Omega)} \leq c_9 \left(\|Lu\|_{L^{p_m}_m(\Omega)} + \|u\|_{L^{p_{s-1}}(\Omega)} \right),
\]

with \(c_9 \in \mathbb{R}_+ \) dependent on the same parameters of \(c_8 \) and on \(s \). Therefore, \(u \) belongs to \(W^{2,p}_s(\Omega) \).
If $m < s - 1$, we denote by k the positive integer, such that
\begin{equation}
 s - m - 1 \leq k < s - m. \tag{5.17}
\end{equation}
Then, for $i = 1, \ldots, k$, we have that
\begin{equation}
 L^p_s(\Omega) \hookrightarrow L^p_{m+i}(\Omega). \tag{5.18}
\end{equation}
Therefore, using (5.14) and (5.16) with $m + i$, $i = 1, \ldots, k$, instead of s, we deduce that $u \in W_{m+1}^{2,p}(\Omega), \ldots, u \in W_{m+k}^{2,p}(\Omega)$. On the other hand, we have that
\begin{equation}
 W_{m+k}^{2,p}(\Omega) \hookrightarrow L^p_{s-1}(\Omega) \tag{5.19}
\end{equation}
and then, since $u \in L^p_{s-1}(\Omega)$, (5.14) holds. Thus, u satisfies (5.16) and then $u \in W_{s}^{2,p}(\Omega)$.

Theorem 5.2. If conditions (h_1), (h_2), and (h_3) (with $t_2 > n$ and $t_2 > n/2$) hold, and $a \geq a_0 > 0$ a.e. in Ω, then the problem
\begin{equation}
 u \in W_{s}^{2,p}(\Omega) \cap W^{1,p}_{s}(\Omega), \quad Lu = 0, \tag{5.20}
\end{equation}
admits only the zero solution.

Proof. Fix $u \in W_{s}^{2,p}(\Omega) \cap W^{1,p}_{s}(\Omega)$, such that $Lu = 0$. From Lemma 5.1 it follows that $u \in W^{2,p}(\Omega)$. On the other hand, since $u \in W^{1,p}(\Omega) \cap W^{1,p}_{loc}(\Omega)$, from Lemma 2.2 we have that $u \in W_{s}^{1,p}, \ldots, k$. Thus, from [13, Theorem 5.2] we deduce that $u = 0$. \blacksquare

References

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>March 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>September 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru